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Abstract 
In order to solve the problem of insufficient extraction of low-level information in U-Net 
network, a three-layer V-network is designed in this paper, and the feature extraction 
and recovery are performed by three V-networks with different depths to ensure that 
the features at all levels of the image can be extracted. The dual-channel attention 
module in the model flexibly controls the channel attention coefficients of the dual 
branches by the second-order channel attention mechanism, and uses the pixel attention 
module to adjust the coefficients of different pixels on the same channel to make the 
recovered images more discriminative. The experimental results show that the three-
layer V-network model performs better on the "Urban100" test set than other test sets, 
and extracts the low-level edge information better than other test sets. 
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1. INTRODUCTION 
With the increasing requirements for image quality in various industries, how to obtain high-

quality images has become a research hotspot for researchers at home and abroad. The (single-
image super-resolution reconstruction) technique can recover corresponding high-resolution 
images from low-resolution images[1], which has been widely used in medical, aviation, 
security and other fields[2]  

The traditional interpolation-based[3] and reconstruction-based[4] SISR algorithms are 
relatively simple and computationally small, but the reconstruction effect is poor and suffers 
from severe blurring as well as loss of high-frequency information. The SRCNN[5] model 
proposed by Dong et al. introduces deep learning into the field of SISR, and the image 
reconstruction effect is significantly better than the traditional methods. However, because it 
upsamples the input, it not only leads to the reduction of high-frequency information of the 
image, but also the computational effort increases significantly. To address this problem, Dong 
et al. then proposed an improved model FSRCNN[6].FSRCNN takes the original image input to 
the network and upsamples the image output from the network, which improves the model in 
terms of computation and training speed. The VDSR[7]model proposed by Kim et al. combines 
the residual structure with convolutional neural networks for the first time and applies it to the 
image SR domain. Due to the deepening of the network depth, the learning ability of the VDSR 
model is significantly enhanced compared to SRCNN and the image reconstruction is better. The 
ESPCN[8] model proposed by Shi et al. uses a new upsampling method, subpixel convolution. 
The model upsamples the output feature maps at the end, preserving more texture regions in 
the low-resolution space. The DRCN[9] model proposed by Kim et al. applies recursive neural 
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network structure to super-resolution reconstruction for the first time. The gradient 
disappearance is effectively avoided by using recursive supervision. The SRDenseNet[10] 
proposed by Tong et al. introduces a dense block structure and achieves good results. 
DenseNet[11] feeds the features of each layer to all subsequent layers in the dense block, which 
enables the network to mitigate the gradient disappearance problem and enhance feature 
propagation. The SRGAN[12] proposed by LEDIG et al. The LapSRN[13] model proposed by Lai 
et al. uses stepwise upsampling to predict the residuals one level at a time to make the network 
propagate faster. The RCAN[14] model proposed by Zhang et al. introduces a channel attention 
mechanism to make the network propagate faster by adaptively learning interdependencies 
between channels enables the network to focus on learning important channel features, thus 
improving the performance of the network. 

However, most of the existing reconstruction models cannot extract the multi-level 
information of the image at the same time. To optimize this problem, this paper proposes a 
three-layer V-shaped network structure based on U-Net network. The content of our work is as 
follows: 

1) A three-layer V-network structure is proposed, and this network can extract information 
to all levels of the image simultaneously. 

2) The feature extraction module uses a two-branch structure with different convolutional 
kernel sizes to extract both high and low frequency information from the image. 

3) The pixel attention module is introduced after the channel attention module, which adjusts 
the coefficients of the different pixels on the channel so that the details of the recovered image 
are more visible. 

2. MODEL STRUCTURE 
This model reconstructs the high-resolution image by first compressing and then expanding 

it while keeping the model lightweight, and its structure is shown in Figure 1. The model mainly 
contains three layers of V-shaped networks for extracting features at different levels of the 
image, the first layer contains a Dense Down Projection Network (DDPN) and a Dense Up 
Projection Network (DUPN), the second layer contains two DDPNs and two The third layer 
contains three DDPNs and three DUPNs, and finally the three feature maps recovered from the 
three layers are element-summed and upsampled, and then the original low-resolution image 
that has been upsampled by double triple interpolation is element-summed again and 
reconstructed by convolution to obtain the final HR image. 

 

 
Figure 1. Three-layer V-shaped network structure diagram 
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Firstly, the input low-resolution image LRF  is convolved with a 3×3 layer to boost the image 
features from 3 to 64 dimensions, while the initial features of the image are extracted, and the 
feature map is denoted as 0F , which can be expressed as: 

 

 0 ( )LRF F b  (1) 
 

Where,   is the ReLU activation function,   denotes the weight, and b  is its 
corresponding bias parameter. 

After the initial feature extraction, the compression and expansion phase of the network 
begins. The feature map size is halved and the number of channels is doubled for each DDPN 
module that the feature map passes through, and conversely, the feature map size is doubled 
and the number of channels is halved for each DUPN module that the feature map passes 
through. 

For example, 0F   is compressed by 1DDPN   to obtain the feature map 1F  , where the 
number of channels of 1F  is 128 and the image size is half of the original one, while 1F  is 
expanded by 1DUPN   of the first layer V network to obtain the final output 1F  of the first 
layer V network, where the feature map size is twice of 1F  and the number of channels is 
reduced to 64. The specific representation is as follows, where ( )DDPNf )   represents the 
compression operation and ( )DUPNf )  represents the expansion operation. 

 
 

11 0( )DDPNF f F  (2) 

 
 

11 1
1 1 0( ) ( ( ))DDPNDUPN DUPN
F f F f f F  (3) 

 
At the same time, 1F  is compressed again by 2DDPN  to obtain the feature map 2F  with 

256 channels, and similar to 1F , 2F  is expanded by 2DUPN  and 2DUPN  of the second 
layer type network to obtain the final output 2F  of the second layer type network, while 2F  
continues down through the last compression module 3DDPN  and reaches the bottom of the 
network to obtain the feature map 3F   with 512 channels, which can be expressed by 
equations (4) to (7): 

 

2 12 0( ( ))DDPN DDPNF f f F                        (4) 

 
2 12

2 0( ( ( )))DDPN DDPNDUPN
F f f f F                       (5) 

 

2 12 2
2 0( ( ( ( ))))DDPN DDPNDUPN DUPN
F f f f f F                    (6) 

 

3 2 13 0( ( ( )))DDPN DDPN DDPNF f f f F                       (7) 
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Then 3F   is successively expanded by 3DUPN  , 3DUPN  , and 3DUPN   to obtain the 
output 3F   of the third layer V-network, and finally 1F  , 2F  , and 3F   are summed to 
obtain the output F  of the three-layer V-network. as follows: 

 
 

3 2 13
3 0( ( ( ( ))))DDPN DDPN DDPNDUPN
F f f f f F  (8) 

 
 

3 2 13 3
3 0( ( ( ( ( )))))DDPN DDPN DDPNDUPN DUPN
F f f f f f F  (9) 

 
 

3 2 13 3 3
3 0( ( ( ( ( ( ))))))DDPN DDPN DDPNDUPN DUPN DUPN
F f f f f f f F  (10) 

 
 1 2 3F F F F  (11) 

 
2.1. DDPN and DUPN 

From the above introduction, it has been known that DDPN and DUPN represent the 
compression and expansion modules of the three-layer V-network, respectively. Their internal 
structures are almost the same, and the only difference is that the convolutional layer is used in 
DDPN to compress the image size and expand the channels, and the deconvolutional layer is 
used in DUPN to recover the image size and compress the channels. The specific structures are 
shown in Figure 2 and Figure 3. 

 
Figure 2 DDPN internal structure diagram 

 
Figure 3. DUPN internal structure diagram 

 

In Figure 2, the model extracts the features of the image step by step through three Dual 
Channel Attention Modules (DCAM) 1DCAM , 2DCAM , and 3DCAM , and the three DCAMs are 
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densely connected to each other, which effectively mitigates the gradient disappearance and 
enhances the utilization of shallow features. A "Concat" connection is added after each DCAM 
module in order to stitch all the outputs of the module, and then a bottleneck layer is used before 
the convolution layer to downscale the feature map to the same dimension as the input. The 
final output is obtained by compressing the feature map size to half of the original size and 
doubling the number of channels through the convolution layer and the "PReLU activation 
function". In Figure 3, the feature extraction process is the same as that in Figure 2, but after the 
bottleneck layer, the feature map is upsampled by the deconvolution layer and the "PReLU 
activation function", and the feature map is expanded to twice the original size and the number 
of channels is compressed to half the original size to get the final output. 

Specifically, suppose Figure 2 shows the internal structure of 1DDPN  , then its input and 
output are 0F   and 1F  , respectively. 0F   is extracted by 1DCAM   to get the feature map 

1DCAMF , at this time 
1DCAMF  is still a 64-dimensional feature map, because DCAM only extracts 

features without changing the size and number of channels of the feature map. Then 
1DCAMF  is 

stitched with 0F   to get 
10{ , }DCAMF F   ({,} means stitching operation), the dimension of the 

stitched feature map is 128, the stitched feature map 
10{ , }DCAMF F  is fed into 2DCAM  to get 

the feature map 2DCAMF , and similarly, the dimension of the feature map does not change, then 

0 2{ , }DCAMF F  is fed into 3DCAM  to get the feature map 3DCAMF , the dimension of 3DCAMF  is 
192, Finally, all the inputs of 1DCAM , 2DCAM  3DCAM , and 

10 0 0 2{ ,{ , },{ , }}DCAM DCAMF F F F F , are 
stitched together to get the feature map, which has a dimension of 384. Since DCAM does not 
change the number of channels of the feature map, before the compression operation, the 
feature map should be sent to the bottleneck layer to downscale to 64 dimensions to obtain the 
feature map F_BL, and then the convolution layer and the " PReLU activation function" to obtain 
a feature map with half of the image size and 128 channels, which is expressed as follows: 

 
 

1 1 0( )DCAM DCAMF f F  (12) 
 

 
2 2 10 0({ , ( )})DCAM DCAM DCAMF f F f F  (13) 

 

 
3 3 2 10 0 0, ,DCAM DCAM DCAM DCAMF f F f F f F  (14) 

 

 
1 2 10 0 0 0 0 0, , , , ,BL BL DCAM DCAM DCAMF f F F f F F f F f F  (15) 

 
 1 ( )s BL sF F b  (16) 

 
where 0F   is the input of 1DDPN  , 1F   is the output of 1DDPN  , 

1
( )DCAMf )   , 2 ( )DCAMf )   , 

and 3 ( )DCAMf )   are the extracted feature operations of the three DCAM blocks, respectively, 
( )BLf )   denotes the bottleneck layer operation, s   and sb   denote the weights and bias 

parameters of the convolutional layer, respectively, and ( ))   denotes the PReLU activation 
function. 
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2.2. Dual Channel Attention Module(DCAM) 

As the core module of DDPN and DUPN, DCAM is mainly used to extract the image features, 
and its structure is shown in Fig. 4. DCAM uses both 3×3 and 5×5 convolutional kernels to 
enable the network to extract both low and high frequency information of the image. It is worth 
noting that since the size of the image is not changed during the feature extraction stage, the 
convolution kernels are convolved in the form of "same", and then the two extracted features 
are fused together and subjected to global covariance pooling (GCP) GCP is used instead of 
global covariance pooling to obtain a 1×1×C vector, i.e., to avoid the destruction of image details 
and to obtain a more differentiated feature representation. The purpose of this is to reduce the 
computational effort, and then use the "Softmax1" and "Softmax2" functions to obtain two 
different sets of channel attention coefficients for the feature vector, and the sum of the two sets 
of coefficients is 1, so it can be adjusted by The ratio of the two sets of coefficients can be 
adjusted to adjust the attention of the image on the low and high frequency information, thus 
allowing more flexibility in extracting different features. After obtaining the two sets of channel 
attention coefficients, they are fed into the pixel attention module to fine-tune the attention 
coefficients on each channel so that each pixel in the feature map has a more accurate coefficient, 
and finally the two sets of attention coefficients are applied to the feature maps extracted from 
the 3×3 and 5×5 convolution kernels and summed up to obtain the final output. 
 

 
Figure 4. DCAM network structure diagram 

 
Specifically, assuming that Figure 4 shows the internal structure of 1DCAM  in 1DDPN , the 

input of Figure 4 is 0F   and the output is 
1DCAMF   , 0F   is first passed through 3×3 and 5×5 

convolution kernels to obtain two feature maps 3 3
0F   and 5 5

0F   respectively, and the two 
feature maps are element-summed to obtain 0F  , which can be expressed by the following 
equation: 

 
 3 3

0 3 3 0( )F H F  (17) 
 

 5 5
0 5 5 0( )F H F  (18) 
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 0 3 3 0 5 5 0( ) ( )F H F H F  (19) 
 

where 3 3 ( )H ) and 5 5 ( )H )  denote the convolutional operations with convolutional kernels 
of size 3×3 and 5×5, respectively. Immediately after 0F   is pooled by global covariance to 

obtain the feature vector t  , t  is compressed by a 1×1 convolution kernel to obtain 't  , and 
then 't  goes through the fully connected layer and Softmax1 and Softmax2 to obtain different 
two channel attention coefficients 1  and 2  , respectively, and 1 2 1 . 

 
 3 3 0 5 5 0( ( ) ( ))GCPt f H F H F  (20) 

 
 1 1 3 3 0 5 5 0GCPt H f H F H F  (21) 

 
 1 1 1 3 3 0 5 5 0Softmax1 F GCPf H f H F H F  (22) 

 
 1 1 3 3 0 5 5 02 Softmax 2 F GCPf H f H F H F  (23) 

 
where 1 1( )H ) denotes the convolution kernel size of 1 × 1 convolution operation, ( )GCPf )  

denotes the global covariance operation, ( )Ff )   denotes the fully connected operation, and 
)Softm x(a )  denotes the Softmax activation function. Then 1  and 2  are fed into the pixel 

attention module to obtain pixel attention coefficients '
1   and '

2   . Then, '
1   and '

2   are 
applied to 3 3

0F   and 5 5
0F   to obtain the outputs of the two branches, 

1

(1)
DCAMF   and 

1

(2)
DCAMF  , 

and finally, 
1

(1)
DCAMF   and 

1

(2)
DCAMF   are element-summed to obtain the final output, 

1DCAMF  
which can be expressed as follows, representing the sigmoid activation function. 

 
 1 1 1 1 1sigmoid H  (24) 

 
 2 21 12 sigmoid H  (25) 

 
 

1

(1) ' 3 3
1 0( )DCAMF F  (26) 

 
 

1

(2) ' 5 5
2 0( )DCAMF F  (27) 

 
 

1 1 1

(1) (2)
DCAM DCAM DCAMF F F  (28) 

2.3. Loss function 

Since the three-layer V-network model produces feature maps at different scales when 
compressed and expanded, this paper uses the Multi-scale Structural Sinilarity (MS_SSIM) loss 
function[15] combined with the L1 loss function[16] as the total loss function, i.e: 
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 _ 1(1 )total MS SSIML L GL1GL11  (29) 

 
where  uses the same coefficient of 0.16 as in the literature [15], G  denotes the Gaussian 

distribution parameter, _MS SSIML   and 1L   represent the MS_SSIM and the 1L   loss function, 
respectively, and are calculated as follows: 

 

 
1

i 1

1( ) ( )
N

LR HR
TVN i iL H I I

N
 (30) 

 
 1 _ ( ( ) )LR HR

MS SSIM TVN i iL MS SSIM H I I  (31) 
 

where,  denotes all parameters of the network, ( )LR
TVN iH I  is the network reconstructed 

image, HR
iI   is the original high-resolution image, and MS_SSIM represents the multi-scale 

structural similarity operation. 

3. EXPERIMENTAL SETUP 
3.1. Experimental dataset 

The dataset for this experiment uses the DIV2K[17] dataset containing 1000 high-definition 
images, of which 800 are used as the training set and the remaining 200 as the validation set to 
improve the generalization ability of the model. The test set uses four standard datasets 
commonly found in the field of super-resolution reconstruction, namely, Set5[18], Set14[19], 
BSDS100[20], and Urban100[21]. The first three datasets contain rich natural scenes, and the 
fourth dataset contains various architectural scenes. These datasets include image details of 
almost all frequency bands, which can well validate the performance of the model. In addition, 
in order to make full use of the training set and prevent the model from overfitting, this 
experiment expands the dataset by inverting and rotating the dataset. And the pixels of the 
images are normalized to between [-1,1] to avoid the gradient dispersion phenomenon during 
the training process. 

3.2. Model parameter settings and experimental environment 

The model uses Adam[22] as the optimizer with the initial learning rate set to 410  , 1  and 

2  using the default values of the optimizer, i.e., 1 0.9 , 2 0.999 , to avoid the division by 

0 error factor 810 . A total of three DDPN modules and six DUPN modules are used in the 
model. Pytorch was used as the deep learning framework and Cuda was used for acceleration. 

4. RESULTS AND ANALYSIS 
4.1. Comparative analysis with the classical model of image super-resolution 

reconstruction 

In this section, the model proposed in this paper (TVN) is compared and analyzed with 
existing classical models, mainly including SRCNN, FSRCNN, D-DBPN, EDSR and the traditional 
algorithm Bicubic. PSNR and SSIM are used as the evaluation indexes of the reconstruction 
effect. Table 1 shows the PSNR and SSIM values of each model at magnifications of ×2, ×3, and 
×4, respectively. From the data in the table, it can be seen that TVN performs well in all three 
magnification factors compared with the rest of the classical models. Among them, there is a 
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more obvious improvement on the Urban100 dataset compared with the other models, which 
indicates that the present model can recover more edge texture information. 

 

Tabel 1. Data comparison between the model in this chapter and existing classical models 
on PSNR/SSIM 

Method Scale Set5 Set14 BSDS100 Urban100 
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

Bicubic ×2 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 
SRCNN ×2 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8948 
ESPCN ×2 37.00/0.9559 32.75/0.9098 31.51/0.9065 29.87/0.9065 

FSRCNN ×2 37.06/0.9554 32.76/0.9078 31.53/0.8912 29.88/0.9024 
VDSR ×2 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140 
DRCN ×2 37.63/0.9588 33.06/0.9121 31.85/0.8942 30.76/0.9133 

LapSRN ×2 37.52/0.9591 33.08/0.9130 31.80 /0.8950 30.41/0.9101 
D-DBPN ×2 38.09/0.9600 33.85/0.9190 32.27/0.9000 32.55/0.9324 

EDSR ×2 38.11/0.9602 33.92/0.9195 32.32/0.9013 32.93/0.9351 
RDN ×2 38.24/0.9614 34.01/0.9212 32.34/0.9017 32.89/0.9353 

TVN(our) ×2 38.22/0.9614 34.07/0.9215 32.36/0.9018 32.94/0.9359 
Bicubic ×3 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 
SRCNN ×3 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 
ESPCN ×3 33.02/0.9135 29.49/0.8271 28.50/0.7937 26.41/0.8161 

FSRCNN ×3 33.20/0.9149 29.54/0.8277 28.55/0.7945 26.48/0.8175 
VDSR ×3 33.67/0.9210 29.78/0.8320 28.83/0.7990 27.14/0.8290 
DRCN ×3 33.82/0.9226 0.2977/0.8314 28.80/0.7963 27.15/0.8277 

LapSRN ×3 33.82/0.9227 29.87/0.8320 28.82/0.7980 27.07/0.8280 
D-DBPN ×3 - - - - 

EDSR ×3 34.65/0.9280 30.52/0.8462 29.25/0.8093 28.80/0.8653 
RDN ×3 34.71/0.9296 30.57/0.8468 29.26/0.8093 28.80/0.8653 

TVN(our) ×3 34.73/0.9293 30.62/0.8469 29.30/0.8095 28.89/0.8661 
Bicubic ×4 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 
SRCNN ×4 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 
ESPCN ×4 30.66/0.8646 27.71/0.7562 26.98/0.7124 24.60/0.7360 

FSRCNN ×4 30.73/0.8601 27.71/0.7488 26.98/0.7029 24.62/0.7272 
VDSR ×4 31.35/0.8830 28.02/0.7680 27.29/0.0726 25.18/0.7540 
DRCN ×4 31.53/0.8854 28.03/0.7673 27.24/0.7233 25.14/0.7511 

LapSRN ×4 31.54/88.50 28.19/0.7720 27.32/0.7270 25.21/0.7560 
D-DBPN ×4 32.47/0.8980 28.82/0.7860 27.72/0.7400 26.38/0.7946 

EDSR ×4 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 
RDN ×4 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 

TVN(our) ×4 32.52/0.8994 28.79/0.7870 27.75/0.7422 26.69/0.8037 

4.2.  Image reconstruction effect comparison and analysis 

In this paper, we select the "head" image in Set5 dataset and the "img_046" image in 
Urban100 dataset to do down-sampling factor of "×2" and "×4" respectively. " and "×4" image 
reconstruction effect comparison and analysis, as shown in Figures 5 and 6. From Figure 5, we 
can see that the recovered images of this model have more details, stronger facial texture and 
clearer eyes than other models. It is also easy to see from Figure 6 that the images recovered by 
the present model have more obvious edge structure, which is consistent with the results of 
data analysis in the previous section. 
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Figure 5. Comparison of reconstruction results of "head" images in Set5 dataset by models 

(×2) 

 

 
Figure 6. Comparison of the reconstruction effect of "img_046" image in Urban dataset by 

models (×4) 

5. CONCLUSION 

This chapter proposes an improved three-layer V-network structure based on the U-Net 
network. The model contains three V-networks of different depths that can extract features at 
different levels of the image, and the network is guaranteed to be lightweight by progressive 
compression and recovery. The network also introduces a dual-channel attention module, 
which can adaptively adjust the information fusion of the dual channels when extracting 
features in order to reconstruct more discriminative features. Experimental results show that 
the present model recovers sharper low-level edge features of images compared with other 
classical models. 
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