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Abstract	
Aiming	at	 the	problem	 that	 the	vibration	 signals	of	 rolling	Electric	Unmanned	Aerial	
Vehicle	 equipments	 are	 easily	 disturbed	 by	 external	 noise,	 and	 the	 traditional	 fault	
diagnosis	methods	 are	 difficult	 to	 extract	 fault	 features	with	 low	 accuracy,	 a	 rolling	
Electric	 Unmanned	 Aerial	 Vehicle	 equipment	 fault	 diagnosis	 method	 based	 on	
communication	 clutter	 suppression	 wavelet	 transform	 (WT)	 mechanism	 and	
convolutional	 neural	 network	 combined	with	 support	 vector	machine	 (CNN‐SVM)	 is	
proposed.	Firstly,	the	extended	Electric	Unmanned	Aerial	Vehicle	equipment	vibration	
signal	 is	 transformed	 into	 a	 two‐dimensional	wavelet	 time‐frequency	map	 using	 the	
wavelet	transform	method.	Secondly,	an	improved	convolutional	neural	network	model	
is	used	to	train	the	segmented	two‐dimensional	image	set	to	extract	the	deep	features	of	
time‐frequency	 images.	 Finally,	 the	 extracted	 feature	 vector	 is	 input	 into	 the	 SVM	
classification	layer	after	the	parameter	optimization	to	realize	the	fault	classification	of	
rolling	Electric	Unmanned	Aerial	Vehicle	equipments.	The	experimental	results	show	
that	the	recognition	accuracy	of	the	proposed	method	is	higher	than	traditional	method.	
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1. INTRODUCTION	

With the rapid development of science and technology, modern industrial productivity has 
been significantly improved, and the scale and complexity of rotating machinery and equipment 
are also increasing [1]. As the core part of rotating machinery, Electric Unmanned Aerial Vehicle 
equipments bear the important function of supporting and reducing the friction of the unit. 
Electric Unmanned Aerial Vehicle equipments are the core components of large rotating 
machinery such as steam turbine units. Due to high operating loads and harsh working 
environments, long-term operation can easily lead to deterioration of lubrication status, which 
in turn can cause a series of adverse reactions such as friction, biting, corrosion, cracks, etc., 
ultimately leading to oil film instability, disrupting normal lubrication status, and causing major 
safety accidents, Therefore, effective monitoring and early warning of the lubrication status of 
sliding  Electric Unmanned Aerial Vehicle equipments is of great significance [2].  Electric 
Unmanned Aerial Vehicle equipments is of great significance to ensure the safety and economic 
benefits of industrial production. 

However, because the Electric Unmanned Aerial Vehicle equipment is affected by many 
external factors and noise in the long-term work, the collected vibration signal becomes 
complicated and difficult to analyze, which makes the fault characteristics difficult to extract [3]. 
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In order to effectively extract fault characteristics in Electric Unmanned Aerial Vehicle 
equipments, we usually need to de-noise the signal first. Common signal processing methods 
include wavelet transform and empirical mode decomposition. Although Empirical Mode 
Decomposition (EMD) method has been widely used in processing rotating machinery fault 
signals, there are still problems of overlapping of different intrinsic mode functions and pseudo-
modes on signal boundaries. For this reason, Ensemble Empirical Mode Decomposition (EEMD) 
is proposed [4]. Nasiri et al. [5] proposed three improved LeNet fault diagnosis models and 
compared the influence of different fine-tuning methods on transfer learning diagnosis results. 
Riba et al. [6] use the self-developed experimental device to transform the collected one-
dimensional vibration signal through the characteristics of Continuous wavelet transform, CWT, 
to obtain the input time-frequency image. Input to CNN for fault classification, the highest 
classification accuracy can reach 100%. Berri et al. [7] combine Global Average Pooling (GAP) 
with the convolution layer to reduce the use of the full connection layer in the previous CNN 
model and solve the problem of long training time and many parameters in the traditional CNN 
model. Traditional convolutional neural networks usually use Softmax classifier to achieve fault 
classification in fault diagnosis, but SVM classifier is more powerful than Softmax classifier in 
the case of multiple classifications. In addition, traditional CNN uses full connection layer with 
many parameters and takes a long time, which is easy to cause overfitting [8]. 

Aiming at the problems existing in the traditional intelligent fault diagnosis methods, this 
paper will use the combination of CNN and SVM to achieve  Electric Unmanned Aerial Vehicle 
equipment fault classification. Firstly, the Electric Unmanned Aerial Vehicle equipment 
vibration signal collected by the acceleration sensor is normalized, and the data is enhanced by 
1/3 overlapping data acquisition. Secondly, the dimension conversion method is used to convert 
the two-dimensional time-frequency image into CNN to extract the deep features of the signal. 
Finally, the extracted feature vectors are normalized and divided and input into the SVM 
optimized to realize classification diagnosis. 

2. METHOD	
2.1. Wavelet	scattering	transform	and	CNN‐SVM	fault	diagnosis	model	

 
Figure	1.	Wavelet scattering transform and CNN-SVM fault diagnosis model Structure 

 
Aiming at the deficiency of traditional CNN (convolutional neural network, CNN) model 

diagnosis and recognition accuracy, this paper designed a three-layer stacked CNN-SVM 
(convolutional neural network combined with support vector machine, CNN-SVM) network. 
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Firstly, the extended  Electric Unmanned Aerial Vehicle equipment vibration signal is 
transformed into a two-dimensional wavelet time-frequency map using the wavelet transform  
(WT) method. Secondly, an improved convolutional neural network model is used to train the 
segmented two-dimensional image set to extract the deep features of time-frequency images. 
Finally, the extracted feature vector is input into the SVM classification layer after the parameter 
optimization to realize the fault classification of rolling Electric Unmanned Aerial Vehicle 
equipments. Wavelet scattering transform and CNN-SVM fault diagnosis model as shown on 
figure 1. 

2.2. Wavelet	scattering	transform	

Because the acoustic emission signal of the Electric Unmanned Aerial Vehicle equipment 
collected in practice will be interfered by the noise of the surrounding working environment, it 
will affect the identification and analysis of the weak signal in the early fault stage. Therefore, a 
signal feature analysis and extraction method with translation invariance and local stability is 
needed. In this paper, wavelet scattering transform (WST) is used to extract the acoustic 
emission signals of sliding Electric Unmanned Aerial Vehicle equipment automatically.  The 
wavelet scattering framework is shown in Figure 2. Firstly, wavelet scattering averages the input 
signal using the wavelet low-pass sweep filter to generate layer 0 scattering coefficient [9]. Then 
the high-pass wavelet filter ψ transforms the signal continuously to generate a set of scaling 
coefficients. The nonlinear operator (called modulus) is applied to the scaling coefficients, and 
the output is filtered by wavelet low-pass filter to generate the first layer scattering coefficients. 
The output of the upper layer becomes the input of the operation of the next layer: The 
lubrication state identification of plain Electric Unmanned Aerial Vehicle equipments based on 
acoustic emission and WST-CNN coordination is repeated in the same process to obtain the 
scattering coefficient of the second layer. In short, WST can be summarized as the convolutional 
calculation of the wavelet sign added with nonlinear operation to obtain the wavelet sign with 
translation invariance and local stability [10], and the wavelet scattering transformation 
formula is: 

 
( ) | ( ) |J n JS n f f x                                 (1) 

 

Among: ψ is a pass filter; ϕ is a low-pass filter; 

J is the maximum scale; ( )JS n f Is the scattering coefficient, i.e. the wavelet scattering feature. 
 
 

 
Figure	2.	Wavelet scattering framework 
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Since each iteration requires more computing power, for the acoustic emission signal of plain 
Electric Unmanned Aerial Vehicle equipment [11], three layers can satisfy the application: the 
first layer basically performs average operation, but the details of the signal are lost; Layer 2 
captures detail, similar to scale-invariant transform function; Layer 3 provides additional 
information to improve classification. 

The linear combination form of multi-kernel functions is 
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Lagrange duality, the hyperplane finding problem is transformed. To solve the duality problem, 
the objective function based on kernel function is: 
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The corresponding decision function is: 
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Gaussian kernel function parameter σ, and weight coefficient γ make the selection of 

MKLSVM parameters particularly complex. To choose the right one Parameters, using particle 
swarm optimization algorithm to optimize parameters. 

3. EXPERIMENT	
3.1. Wavelet	Transform	Scattering	Coefficient	Setting	

In traditional or shallow machine learning techniques, a manual feature extraction step is 
usually required to learn differentiated information from data such as images. Features and 
classifiers must be designed and selected manually [12]. The wavelet scattering transformation 
of the data can not only reduce the dimension of the monitoring data, reduce redundant 
information and improve the computational efficiency, but also extract the essential 
characteristics of the data and extract the implicit signal characteristics. Figure 6 shows the 
structure of a wavelet scattering network, which is called a deep network because it performs 
three main tasks that make up a deep network: Convolution, nonlinear and pooling. Convolution 
is performed by wavelet, the modal operator [13] is used as linearization, and the filtering of 
low filters is similar to the pool wavelet scattering network, which can obtain low variance 
features from time series and image data with less configuration, and capture important 
information while reducing dimensionality [14]. For use in machine learning and deep learning.  
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3.2. Comparison	of	fault	diagnosis	results	

The actual test classification results completely match the predicted classification results, and 
there are no misidentified samples. As shown in Table 1, the average classification accuracy of 
the proposed model is 0.33% higher than that of the traditional CNN fault diagnosis results, 
achieving a high diagnostic accuracy.  
 

Table	1.	Average Diagnostic Accuracy Of The Model 

Method Classification accuracy% 

CNN-Softmax 99.11 
proposed method 99.83 

 
In order to evaluate the anti-noise capability of the proposed method, the model trained in 

3.2 is saved, and noise interference is added to the data of the verification set, and Gaussian 
white noise of -4dB, 0dB 4dB, 8dB and 12dB is added respectively.  The model classification 
results are shown in Table 1.  

In this paper, traditional CNN was selected to extract fault features and input them into fault 
diagnosis classification models of different classifiers. The input data were the same, and the 
diagnostic results were compared with the method in this paper, as shown in Figure 3. 

 

 
Figure	3.	Diagnosis accuracy of each model under different noise conditions 

 

It can be clearly seen from the above table that compared with other fault diagnosis methods 
that use CNN to extract features and input different classifiers for classification, the verification 
accuracy of the proposed method in this paper has obvious advantages. In order to verify that 
the model also has good fault classification results under variable load conditions, the Electric 
Unmanned Aerial Vehicle equipment fault data under two load conditions of motor speed of 
1797r/min and 1772r/min are selected in the experiment, and the fault types are the same. 
Therefore, there are 14,000 wavelet time-frequency fault diagrams after WT conversion. Of 
these, 11,200 are the training set and the remaining 2,800 are the validation set. The average 
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value removed from the five experimental results is taken as the final training result of the 
experiment. Figure 4 shows the column analysis diagram of each comparison method. 
 

 
Figure	4.	Diagnosis accuracy of each model under different working conditions 

4. CONCLUSION	
This paper presents a Electric Unmanned Aerial Vehicle equipment fault detection method 

based on communication clutter suppression technology combined with CNN-SVW. The wavelet 
scattering network is easy to set up, easy to understand and interpret the extracted feature 
matrix, and has both translation invariance and local stability, and the extracted feature matrix 
has stronger robustness. In practical application, the main parameters of wavelet scattering 
network are selected and compared.  
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