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Abstract	
An	important	factor	affecting	road	safety	is	road	cracks.	If	road	cracks	are	not	discovered	
and	 repaired	 in	 time,	 safety	 hazards	will	 increase	 over	 time,	 and	 eventually	 traffic	
accidents	will	occur,	causing	irreversible	losses.	The	detection	of	cracks	often	requires	
on‐site	 inspection	by	engineers	with	 rich	experience,	which	has	 the	problems	of	 low	
efficiency,	high	cost,	and	many	false	detections	due	to	fatigue.	With	the	success	of	deep	
learning	in	various	fields	of	computer	vision,	deep	learning	is	naturally	introduced	into	
the	 crack	 detection	 task.	However,	 in	 the	 crack	 detection	 task,	 convolutional	neural	
networks	with	many	parameters	can	easily	cause	overfitting.	To	solve	this	problem,	we	
propose	stage	feature	reuse	convolutional	neural	network.	In	addition,	deep	learning	is	
a	data‐driven	task.	In	the	manually	labeled	crack	detection	data	set,	the	proportion	of	
positive	samples	in	the	samples	is	small,	and	the	proportion	of	positive	samples	in	each	
image	in	the	data	set	is	different.	It	is	difficult	for	the	model	to	learn	to	capture	ability	to	
achieve	small	targets,	so	we	propose	a	adaptive	threshold	method	for	predicting	each	
crack	prediction	map	to	alleviate	this	problem.	
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1. INTRODUCTION	
Road cracks refer to linear or surface fissures or gaps that appear on the surface of roads, 

typically caused by factors such as traffic loads, temperature changes, water penetration, and 
material aging. These cracks pose serious hazards to the safety and smoothness of roads. When 
cracks exist, they can lead to a decrease in the stability of the road surface, hindering vehicle 
travel, thereby affecting driving safety and efficiency. Additionally, cracks may also result in 
water infiltration into the bottom of the road surface, accelerating the softening and 
degradation of the roadbed material, leading to road subsidence, potholes, and cracking, 
significantly impacting the service life of the road and increasing maintenance costs. Therefore, 
timely repair and prevention of road cracks are crucial to ensuring smooth and safe passage on 
the roads.  

With the rise of deep learning, convolutional neural networks (CNNs) have been widely 
applied to various computer vision tasks such as image classification, segmentation, and object 
detection, achieving significant success in these fields. In order to address the issues of low 
efficiency and high cost associated with manual detection of road cracks, utilizing CNNs for 
automated detection of road cracks has become a popular approach. 

However, there still exist numerous issues and challenges in applying convolutional neural 
networks to crack detection tasks. Firstly, in crack detection tasks, the images of the roads to be 
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inspected are composed of a large amount of uniform texture and color. This differs from other 
computer vision tasks such as classification or segmentation, where the training data is more 
diverse, encompassing not only texture and color but also various object and semantic 
information. This means that crack detection tasks are prone to overfitting when using 
convolutional neural networks, leading to significant redundancy in computation and an 
increase in deployment costs due to the excessive number of parameters. Furthermore, crack 
detection, similar to segmentation and other semantic segmentation tasks, requires setting a 
threshold typically around 0.5 to binarize the probability map of cracks predicted by the neural 
network. However, in crack detection tasks, cracks vary in shape and size, leading to significant 
non-uniformity in foreground and background distributions. Consequently, there is a 
considerable deviation in the confidence distribution of predictions between samples, making 
it unreasonable to uniformly set 0.5 as the threshold.  

To tackle the aforementioned issues, we propose a Stage-wise Feature Reuse network, SFR-
Crack, which incorporates and utilizes features from all preceding stages in the convolutional 
neural network modeling process to alleviate overfitting. Additionally, we introduce an adaptive 
thresholding method where a dynamic threshold is predicted by the neural network to enhance 
the stability of prediction results. 

2. RELATED	WORK	
Road crack detection tasks are equivalent to binary semantic segmentation tasks in computer 

vision. A typical and widespread application scenario for binary semantic segmentation tasks 
is medical image segmentation. U-Net [1] is a classic model for medical image segmentation. Due 
to its simple architecture and versatility, it has been applied in numerous other domains with 
considerable success. Its unique "U" shape comprises a contracting path for context extraction 
and an expansive path for precise localization. Skip connections facilitate information flow 
between these paths, enabling the retention of fine details during upsampling. Another 
noteworthy development is the emergence of Swin-Unet, a U-Net model based purely on 
Transformers, following the success of Transformers in the field of computer vision. UNet 
combines the self-attention mechanism of Transformers, introducing new possibilities for 
image segmentation tasks. Swin-UNet [2] inherits the U-shaped structure of UNet but replaces 
traditional convolutional layers with Swin Transformer [3] modules based on Transformers. This 
adaptation allows the model to better capture long-range dependencies when dealing with 
large-scale images. By leveraging the successful experiences of Transformers in sequence 
modeling, this integration brings higher performance and efficiency to image segmentation 
tasks. 

Since the vast majority of road cracks are linear in nature, the detection of road cracks can 
also be considered a form of edge detection. In edge detection tasks, one of the more classical 
and influential methods is HED (Holistically-Nested Edge Detection) [4]. Inspired by Fully 
Convolutional Networks (FCN) [5] ,HED employs a pruned VGG16 as its backbone to extract 
multi-level features from input images. It comprises two main branches: the side branch, 
responsible for merging feature maps and computing side loss, and the fusion branch, averaging 
prediction scores from the side branch and computing fusion loss. This multi-branch structure 
is a key feature. Feature fusion involves convolution, bilinear interpolation, and weighted 
feature map fusion, enabling effective fusion of features from different levels. Following HED, 
RCF (Richer Convolutional Features for edge detection) [6] was proposed to enhance HED. RCF 
model focuses on utilizing features extracted at each convolutional layer to prevent loss of 
important edge details with increasing model depth. It aggregates features progressively from 
shallow to deep layers at different downsampling stages, capturing information at various 
scales and semantics. After aggregation, RCF upsamples the features to the input image 
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resolution, ensuring detailed information preservation. Finally, it combines high-resolution 
feature maps to generate the edge prediction map. BDCN(Bi-directional cascade network) [7] 
addresses whether shallow networks can match or exceed the performance of deep networks 
in edge detection tasks. It introduces a Scale Enhancement Module (SEM) to leverage dilated 
convolutions with different dilation rates for multi-scale feature fusion. Additionally, it employs 
a bidirectional cascade structure with top-down and bottom-up paths to integrate detailed and 
semantic features effectively. By using VGG16 as the backbone, BDCN outperforms RCF, which 
relies on a deeper ResNet-101 [8] backbone. 

Convolutional neural networks specifically designed for crack detection are mostly based on 
popular segmentation frameworks that are pruned or modified. For example, FPHBN(Feature 
pyramid and hierarchical boosting network) [9] introduces feature pyramids and hierarchical 
boosting networks to the framework of HED. DeepCrack [10] combines the encoder and decoder 
outputs of each stage of Segnet and utilizes features of different scales from these stages for 
crack detection. 

3. METHOD	

3.1. STDC	block	

Since AlexNet [11] achieved great success in the computer vision ImageNet classification task, 
convolution operations have been widely used in image processing tasks. However, standard 
convolutional operations apply convolutional kernel parameters to all channels, resulting in a 
large number of parameters and redundant computations. This could potentially lead to 
overfitting issues in crack detection tasks. Therefore, we choose to use the STDC (short-term 
dense concatenate) [12] module to replace the standard convolution module. In the standard 
convolution module, a convolution operation is followed by a batch normalization layer and a 
ReLU activation function layer. But in the STDC block, the number of channels in the input 
features is first mapped to a hidden space with half the previous number of channels through a 
linear layer (i.e., a convolution operation with a 1 ൈ 1 convolution kernel). This operation 
reduces computational and parameter overhead by reducing the number of feature channels. 
The number of feature channels is halved to create a feature map, which is both retained for 
future use and passed to the next 3ൈ3 convolutional layer. This 3ൈ3 convolutional layer not only 
performs convolutional operations on the feature map but also reduces the number of feature 
channels back to half of their original count. Repeat the above steps, where the i-th 
convolutional layer adjusts the number of feature channels in the convolutional operation to 
N/2୧, where N is the number of input feature maps. The final convolutional layer differs from 
the previous ones in that it no longer adjusts the number of feature channels; instead, it 
maintains the same number of feature channels as the output of the preceding convolutional 
layer. Here, we set i to be 4. Finally, concatenate the feature maps preserved from each 
convolutional layer to generate the final output. The overall structure of the STDC block is 
shown in Figure 1. 

 

 
Figure	1. Overall structure of STDC block. 
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3.2. Stage	feature	reuse	network	

 

 
Figure	2.	Overall structure of the stage feature reuse network 
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Since ResNet introduced residual structures to alleviate the vanishing gradient problem 
caused by the deep depth of convolutional neural networks, this design approach with skip 
connections has garnered widespread attention from researchers. Skip connections can be 
viewed as a form of feature reuse. Inspired by this, DenseNet [13] was proposed. DenseNet takes 
the output of each convolutional layer as the input for all subsequent convolutional layers, 
resulting in dense connections, which are a characteristic feature of DenseNet. Inspire by 
DenseNet, We consider each stage as a unit and use the outputs of these units as inputs for the 
next stage. The overall structure of the network is shown in Figure 2. 

DenseNet consists of dense connection layers and transition layers. Our network differs from 
it because even with the constraints of the growth rate in dense connection layers, the number 
of feature channels gradually increases with the number of layers. This is not conducive to 
minimizing computational and parameter overhead, so we replace dense connection layers 
with STDC blocks. Most importantly, DenseNet halves the output of dense connection layers at 
the end of each stage using transition layers, which results in the loss of information from some 
previous stage feature maps. In our network, the feature maps grown after downsampling are 
downsampled from feature maps of all previous stages without any reduction, maximizing the 
utilization of information from each stage. 

Our decoder module is similar to U-net, but instead of using concatenation for skip 
connections, we directly perform element-wise addition. Blue arrows represent convolutional 
layers with 3ൈ 3 kernel size, while orange arrows represent transposed convolutional layers 
with 4ൈ4 kernel size for 2ൈ upsampling. Before upsampling, the signal goes through an STDC 
block for smoothing. The overall decoder structure is shown in Figure 3. 

 

 
Figure	3.	Overall decoder structure 

3.3.	Adaptive	threshold	

Cracks or fissures, often appear in a narrow and elongated manner, resulting in small areas 
but long lengths. However, cracks or fissures are not merely lines, any defect that significantly 
impacts the integrity of the structure can be considered as a crack or fissure. Therefore, model 
needs to capture not only lines but also areas. Due to variations in the sizes of the gaps, some 
may have large areas, while others may be small but elongated, resulting in a severe class 
imbalance issue, posing a challenge for deep learning models. In the usual workflow, after 
feeding each input image into the model to obtain prediction results, a threshold of 0.5 is used: 
values with prediction confidence greater than 0.5 are regarded as positive samples, while 
values with confidence less than or equal to 0.5 are regarded as negative samples, which is 
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disadvantageous for predicting and segmenting small targets. Therefore, we hope the model 
can autonomously evaluate its predictions for each input image. For results with higher 
certainty, the threshold of confidence is lowered, so that probabilities above the threshold 
become the prediction results. For ambiguous results, the threshold of confidence is raised to 
ensure that high threshold outputs as many correct predictions as possible. 

 

 
Figure	4.	Schematic diagram of the training stage for adaptive thresholding method 

 

As a result, we designed the method as follows, starting with the training stage shown in 
Figure 4. The input image is first fed into the encoder, and the features extracted at various 
stages of the encoder are passed to the decoder module, which outputs images. These images 
are then used to compute the loss with the labels, supervising the output of the crack detection 
model. Confidence scores from the output are iterated as thresholds from 0.1 to 0.99 to find the 
threshold that maximizes the F1 score, which is then used as the label. On the other hand, after 
the input is encoded by the encoder, the last layer connects to a multi-layer perceptron (MLP), 
which predicts a threshold. This threshold is used for loss computation alongside the best 
threshold label obtained from the output result iteration. And in the inference stage as shown 
in Figure 5, the thresholds predicted by the multi-layer perceptron directly binarize the 
predictions output by the crack detection model to form the final output. 

 

 
Figure	5. Schematic diagram of the inference stage for adaptive thresholding method 
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4. EXPERIMENT	AND	RESULTS	
4.1.	Loss	function	

Due to the focus of the BCE loss on a larger quantity of negative samples, namely the 
background, while neglecting the smaller proportion of positive samples, namely the 
foreground, this can lead to poorer predictions for minority samples. Therefore, we use the DICE 
loss function. The DICE loss function can be represented as: 
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where X represents the predicted matrix, and Y represents the label matrix. 
The loss function for thresholding adopts the Smooth L1 function, which can be represented 

as:  
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Where   represents the predicted threshold, and   represents the true threshold. 

4.2.	Dataset	

Our experimental dataset adopts the Crack500 dataset established by Yang et al. [9, 14] for 
crack detection. Due to the large size of the original images, which is not conducive to training, 
the images in the dataset are divided into several smaller images of size . After division, there 
are 1896 images in the training set, 348 images in the validation set, and 1124 images in the 
test set. We performed data augmentation on the training set by rotating the images 90°, 180°, 
and 270°, as well as horizontally flipping them, to combat overfitting. 

4.3. Model	deployment	details	

Our experiments were conducted on the PyTorch platform, with all experiments based on a 
single NVIDIA RTX 3090 GPU. In the Crack500 dataset, the batch size for all models was set to 
8, and they were trained for 80,000 iterations. We chose the AdamW optimizer with a learning 
rate of 0.00001 and weight decay of 0.0002. The learning rate was scheduled using a polynomial 
decay strategy with a momentum of 0.9. We resized all images to a uniform resolution of 
224 ൈ 224. 

4.4. Evaluation	metrics	

We use the following four metrics to measure the performance of the model: precision, recall, 
F1 score, and Intersection over Union (IoU). Precision refers to the proportion of correctly 
predicted positive samples among all samples predicted as positive. It can be expressed by the 
following formula:  

 

 Precision
TP

TP FP



                               (4) 
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Recall, also known as sensitivity or true positive rate, measures the proportion of correctly 
predicted positive samples among all actual positive samples. The formula for recall is as follows: 

 

 Recall =
TP

TP FN
                                 (5) 

 

The F1 score is used to balance the trade-off between precision and recall by computing their 
harmonic mean. The formula for the F1 score is as follows:  

 

 
2 Precision Recall

F1 Score
Precision+Recall

 
                              (6) 

 

The Intersection over Union (IoU) represents the rate of overlap between the predicted 
results and the ground truth labels. The formula for IoU is as follows:  

 

 IoU
TP

TP FP FN


 
                                 (7) 

 

4.5. Comparison	and	analysis	of	experimental	results	

Firstly, we trained our model SFR-net on the Crack500 dataset as mentioned above. 
Subsequently, we employed the method of adaptive thresholding under identical conditions to 
deploy and train, aiming to observe the effectiveness of this approach. The experimental results 
are shown in Table 4.1. 

 

Table	1.	Comparison experiment between SFR-net without adaptive methods and SFR-net 
with adaptive methods 

Method Precision Recall F1 Score IoU 
SFR-net 0.686	 0.749 0.692 0.551 

SFR-net-AT 0.684 0.754	 0.695	 0.552	
 

From the table, it can be observed that the recall rate increased by 0.5%, the F1 score 
improved by 0.3%, and the intersection over union (IoU) increased by 0.1%. Due to the trade-
off between precision and recall, the increase in recall resulting from the adaptive thresholding 
method led to a decrease in precision. Overall, with the application of the adaptive thresholding 
method, both the F1 score and IoU showed improvement, indicating that appropriate 
thresholds can enhance the stability of prediction results. 

We compared our SFR-net model and the SFR-net model with the added adaptive 
thresholding method against outstanding segmentation models including Unet, Swin-Unet, HED, 
RCF, BDCN, and DeepCrack. The experimental results are shown in Table 2. The penultimate and 
last columns in the table show the crack prediction results for our SFR-net model without the 
addition versus with the addition of the adaptive thresholding method. 
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Table	2.	Comparison experiment results of various methods 

Method Precision Recall F1 Score IoU 
Unet 0.675 0.749 0.687 0.546 

Swin-Unet 0.620 0.716 0.634 0.487 
HED 0.648 0.752 0.668 0.526 
RCF 0.664 0.748 0.679 0.537 

BDCN 0.648 0.766	 0.678 0.535 
DeepCrack 0.635 0.765 0.669 0.527 

SFR-net 0.686	 0.749 0.692 0.551 
SFR-net-AT 0.684 0.754 0.695	 0.552	

 

From the table, it can be observed that our method, SFR-net, along with SFR-net-AT, achieved 
the best performance in terms of F1 score, and intersection over union (IoU). In the recall metric, 
BDCN performed the best. However, the higher recall rate implies that BDCN misclassifies many 
backgrounds as cracks. We display the results in Figure 5. 

 

 
Figure	5.	Comparison experiment results of various methods 

 

From the figure 5, we can observe that although Unet segmentation results are continuous, 
there are many cases where the background is misclassified as foreground. Swin-Unet performs 
the worst among other models, possibly due to both its encoder and decoder being based on 
Transformer and the relatively small dataset, leading to training difficulties. The segmentation 
results of HED are rougher compared to Unet, with discontinuous detection of cracks. RCF and 
BDCN have similar segmentation results, lacking in the ability to detect details in crack areas. 
Our SFR-net model generates cracks that are sharper and more accurate compared to other 
methods. However, after incorporating the adaptive thresholding method, our SFR-net model 
appears to be more conservative in predicting smaller targets while capturing relatively 
accurate fine cracks. 

5. CONCLUTION	

To address the relatively uniform data pattern in the crack detection dataset, we employed a 
method of dimension expansion and modeling by utilizing features from all previous stages 
after downsampling at each stage, thereby avoiding overfitting issues. At each stage, we used 
STDC blocks to reduce redundant computational overhead caused by standard convolutional 
layers. Furthermore, to tackle the instability issue commonly encountered with fixed threshold 
binarization methods in segmentation image predictions, we proposed an adaptive 
thresholding approach to enhance the stability of the model's predictions. 
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