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Abstract 

This paper introduces some special-case solutions of three-body systems and provides 
both analytical and simulative measures to demonstrate three-body problem. The result 
explores the Euler’s solution, Lagrange’s solution, Figure-eight solution, aiming to offer 
an introductory overview of the mechanisms of special circumstances and stability of 
three-body systems. The work picks the Lagrange’s solution and Euler’s solution 
specially by applying the simulative measures in detail. It shows that the difference 
between the masses has no direct correlation with the stability of the system in both 
Euler’s and Lagrange’s solution. The difference of initial positions has notable effects on 
the stability of the Euler’s and Lagrange’s solution. 
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1. INTRODUCTION 

The famous three-body problem is one of the problems in the field of astrophysics that have 
remained mysterious and controversial for a long time. In astrophysics, and there are some 
general analytic solutions for centuries to solve the three-body problem since Newton proposed 
Newton’s law of universal gravitation. 

In the three-body problem, take the initial positions and velocities of three masses and solve 
for their subsequent motions according to Newton's laws of motion and Newton's law of 
universal gravitation. Compared to two-body problems, no general closed-form certain solution 
exists in the field of three-body problem. 

To describe the three-body problems mathematically, basic Newtonian equations of motion 
will be applied to describe the form of directional vector 𝑟𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)  indicating a 3-
dimensional perspective. The three gravitationally interacting bodies are expressed in terms of 
𝑚1, 𝑚2 , 𝑚3. 

 

𝑟̈1 = −𝐺𝑚2
𝑟1−𝑟2

|𝑟1−𝑟2|3 − 𝐺𝑚3
𝑟1−𝑟3

|𝑟1−𝑟3|3                         (1) 

 

𝑟̈2 = −𝐺𝑚3
𝑟2−𝑟3

|𝑟2−𝑟3|3 − 𝐺𝑚3
𝑟2−𝑟1

|𝑟2−𝑟1|3                         (2) 

 

𝑟̈3 = −𝐺𝑚1
𝑟3−𝑟1

|𝑟3−𝑟1|3 − 𝐺𝑚3
𝑟3−𝑟2

|𝑟3−𝑟2|3                          (3) 

 

The total energy ℋ of the three-body system is expressed in terms of momentum 𝑝. 
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ℋ =  −
𝐺𝑚1𝑚2

|𝑟1−𝑟2|
−

𝐺𝑚2𝑚3

|𝑟3−𝑟2|
−

𝐺𝑚3𝑚1

|𝑟3−𝑟1|
+

𝑝1
2

2𝑚1
+

𝑝2
2

2𝑚2
+

𝑝3
2

2𝑚3
                 (4) 

 

The work will mainly focuses on historical special-case solutions in this paper and aimsto 
derive the mathematical equations by importing different parameters to describe the three-
body’s motion in different cases and use Python to simulate the motion of different cases, 
varying masses and distances, in order to get a direct observation of orbits and interactions. 
Historical special cases of three-body problems such as Euler’s solution, Lagrange’s solution, 
“Figure-eight” solution are included in the paper.  

The three-body system is highly chaotic and unpredictable. Using both analytical and 
simulative methods, the result still can not predict exactly movements and orbits of the three-
body system. The predicted model is easily changed by its surroundings, such as interactions 
between the masses that are out of the original system. Many special cases of three-body 
problem are susceptible to small perturbations, the system can be altered permanently by 
unexpected forces. This paper explores whether the difference between the masses and their 
initial distances affect the stability of the system in Euler’s solution and Lagrange’s solution. 
After it experiences the forces out of the system, the figure-eight system will no longer remain 
the shape of ideal symmetrical figure-eight. The system of figure-eight system is highly unstable, 
so instead of using stimulative measures to calculate the life-span of the system. But there are 
still some interesting properties in the figure-eight system.  

2. EULER’S SOLUTION 

As considering the three-body problem, the paper looks at the model proposed by 
Euler(1765), a collinear model. Location of each mass Mi(i=1,2,3), is written as (Xi,0) ,center of 
mass(CM)(XG,0) Without loss of generality, assume X3<X2<X1 ,and Ri represents the position 
relative to CM, Ri=Xi-XG Rij=Xi-Xj and choose x=0 between M1 and M3 Therefore, R3<0 R1>0 

and R1>R2>R3, define 
𝑅23

 𝑅12
 =z, R13= (1+z)R12.The equation of the motion represented by the 

Newton equation becomes  

 

R1ω2 =
GM2

R12
2 +

GM3

R13
2                                   (5) 

 

R2ω2 = −
GM1

R12
2 +

GM3

R23
2                                (6) 

 

R3ω2 = −
GM1

R13
2 −

GM2

R23
2                                 (7) 

 

Of course, it gives chances to solve this system directly by using observational data about the 
value of masses and their distance. Observing the distance between the planets is always the 
easiest for human and using method of transit to calculate their masses is also familiar to 
researchers. However, there is one method can use to save time to collect the data from three 
observational distance and masses. Solve the system as shown above. In order to eliminate ω, 
subtract Equation (6)from  Equation (5). Hence, obtain a fifth-order equation as [1]  

 
 (𝑀1 + 𝑀2)𝑧5+(3𝑀1 + 2𝑀2)𝑧4+(3𝑀1 + 𝑀2)𝑧3 − (𝑀2 + 3𝑀3)𝑧2 − (2𝑀2 + 2𝑀3)𝑧 − (𝑀2 + 𝑀3)=0  (8) 

 

It is obvious that z>0. According to Descartes’ rule of signs—the number of positive roots 
either equals to that of sign changes in coefficient of a polynomial or less than it by a multiple 
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of two —Equation (4) has only one positive root. With this root, z, get ω, after plugging in, which 
gives us the angular velocity of the system with little effort.  

Interestingly, the particles move along confocal ellipses with the same eccentricity and period 
around the common CM. However, Euler’s model has not been seen in nature because they are 
susceptible to small perturbations. 

 

 
 

Figure 1. Euler colinear ideal situation with m1: m2: m3 = 1: 2: 3 

 

 
Figure 2. Simulative Euler’s solution 

 

Then using Python to check whether the difference of different masses and difference of the 
initial distances have a correlation with the stability of the system. Define the system is stable if 
they will not collide or go away from each other. The simulative measure is to use the small delta 
time to update their position and velocity. Nevertheless, using this “time-update” method can 
not calculate the life-span of a system accurately. The masses may have collided with each other, 
which means that their orbits are intersected once, but this moment of intersection probably is 
not updated by chance. In this case, using the two objects to have same coordinate in order to 
judge if they have collided will be inappropriate. In order to judge if they collide and go away 
from each other, it needs small delta time to update their position precisely. On the contrary, 
under the limited of simulative time, it needs large delta time to simulate the large life-span of 
the relatively stable system to get their exact life-span. Set up the upper simulative life-span 
level of 50000 seconds (approximately 13hours) to balance the accuracy and preciseness. 
Otherwise, simulating all situations with small delta time and no upper limit will cost 
tremendous time to simulate.  
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First, Look at if standard deviation of the three distances between the masses affects the 
stability of the system. As all the masses are collinear, X2 is defined as 1 and three masses and 
X1 are derived through the random number generator in Python. Assume that all three masses 
revolve around the origin of the Cartesian coordinate system. As the center of mass (CM) is the 
origin point, then calculate for the third position, X3. After having three initial positions and 
three different masses, solving three initial velocity of the masses. Define if the distance 
between two masses is larger than ten times R13, then the masses go away from each other and 
the previous stable system collapse, if the distance is less than one-tenth of the R13, then the 
masses are so closing to each other and have high probability of colliding to each other (here 
identify these situations as they have collided). Simulate the situations with varying masses and 
distance for two thousand times. The standard deviation of the distance, calculated from the 
initial distances of the masses, is plotted in the x-axis. The life-span(unit/seconds), based on 
stimulative assumption, is plotted in the y-axis as shown below.   

 
Figure 3. Influence of difference of initial distances between the masses in small scale 

 

In Firgue 3, admit that the points in the right figure have unevenly distributed standard 
deviation of the distance. Control three individual distances to be generated randomly but not 
the standard deviation of the distance. 

 
Figure 4. Influence of difference of initial distances between the masses in large scale 
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Moreover, the small value of the standard deviation in the Figure 4 is caused by assumption 
that X2 = 1. Still keeping the value of X2 same, in the Figure3, using larger range of number 
generator to increase the standard deviation of the distance. According to data, the points 
denoted the high stability concentrate around x=0. As the difference of three distances increases, 
the life-span drops dramatically. The Euler’s solution shows the high dependence on the 
difference of the initial positions of the three masses.  

For the second part of simulation, fix three masses in the constant distance and vary the value 
of masses. Two values of masses are generated through the number generator and the third is 
calculated by CM. Collecting the initial position and masses, calculate their initial velocity that 
they revolve around the origin. Set up upper life-span level, 50000seconds, to save the time to 
simulate. The results are shown in Figure 5. 

The simulative situations lie mainly in the upper level of life-span and near to zero life-span. 
The points in the middle are evenly distributed from the upper level to the zero. There’s no need 
to enlarge the simulative upper level of life-span because conclude that there is no correlation 
between the standard deviation of masses in Euler’s solution by visually judging the graph.  

 
Figure 5. Life span of differenece of the masses 

3. LAGRANGE’S SOLUTION 

Lagrange(1772) proposed his model of three bodies by arranging three particles at the 
vertices of the equilateral triangle. Each particle still follows the same eccentricity and period 
in the shape of the eclipse with different angles. Note that the Lagrange solution is stable only 
if one of the three masses is much greater than the other two, also known as the restrict three-
body problem. Ideally, three equal masses move in circular orbit which requires that the velocity 
is perpendicular to the gravitational force from CM at any time. Without loss of generality, 
examine one mass in particular. Its potential energy and kinetic energy are equal to  

 

𝐾(𝑥̇) =
1

2
∑ 𝑚𝑖

𝑛
𝑖=1 |𝑥̇𝑖|

2                                (9) 

 

𝑈(𝑟) = ∑
𝑚𝑖𝑚𝑗

𝑟𝑖𝑗

𝑛
1<𝑖<𝑗<𝑛                                (10) 

 

Here import the Lagrangian, combing the equation(9) and (10) together  
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ℒ(𝑥(𝑡), 𝑥̇(𝑡)) = 𝐾(𝑥̇) − 𝑈(𝑟)                           (11) 

 

Because all gravitational forces are conservative forces which change the energy no matter 
which routes they take. Literally, the energy is conserved in the orbits. From the definition of 
Lagrangian, import the Lagrangian equation and equations about action of the path, 𝐴(𝑥). 

 
𝑑

𝑑𝑡
(

𝜕ℒ

𝜕𝑥̇
) =

𝜕ℒ

𝜕𝑥
                                   (12) 

 

𝐴(𝑥) = ∫ ℒ(𝑥(𝑡), 𝑥̇(𝑡))
𝑡2

𝑡1
𝑑𝑡                           (13) 

 

Given particular starting and ending positions, the system follows a path between the start 
and end points which minimizes the action of the path while keeps the energy of the system 
constant.  

In the following discussion, in order to simplify the problem, assume that all three particles 
have the same mass. Each of them lies on the vertices of an equilateral triangle with the mass, 
m, where the sides of the triangle are equal to 2a. First, express the potential energy in Cartesian 
coordination 

 

𝑈(𝑥, 𝑦) = −
𝐺𝑚𝑖𝑚

√(𝑥−𝑎)2+𝑦2 −
𝐺𝑚𝑖𝑚

√(𝑥+𝑎)2+𝑦2 −
𝐺𝑚𝑖𝑚

√𝑥2+(𝑦−√3𝑎)
2                 (14) 

 

It makes sense that the particles are moving in the circular orbit. Therefore, put the potential 
energy into the form of polar coordination and parameter coordination, both of which need 𝜽. 

𝜌 =
2√3

3
𝑎, (𝜃, 𝜌) = (𝜔𝑡, 𝜌) In polar coordination, obtain 

 

  (𝜃, 𝜌) = (√
3𝐺𝑀

8𝑎3 𝑡,
2√3

3
𝑎)                               (15) 

 

Plug x and y by using the parameters in trigonometric functions 

 

𝑈(𝜃) = −
𝐺𝑚𝑖𝑚

√(𝜌 𝑐𝑜𝑠 𝜃 −
√3
2 𝜌)

2

+ (𝜌 𝑠𝑖𝑛 𝜃 +
𝜌
2)

2

−
𝐺𝑚𝑖𝑚

√(𝜌 𝑐𝑜𝑠 𝜃 +
√3
2 𝜌)

2

+ (𝜌 𝑠𝑖𝑛 𝜃 +
𝜌
2)

2

−
𝐺𝑚𝑖𝑚

√(𝜌 𝑐𝑜𝑠 𝜃)2 + (𝜌 𝑠𝑖𝑛 𝜃 − 𝜌)2
                                                                                 

 

 = −
𝐺𝑚𝑖𝑚

𝜌√𝑠𝑖𝑛 𝜃−√3𝑐𝑜𝑠 𝜃+2
−

𝐺𝑚𝑖𝑚

𝜌√𝑠𝑖𝑛 𝜃+√3𝑐𝑜𝑠 𝜃+2
−

𝐺𝑚𝑖𝑚

𝜌√2−2𝑠𝑖𝑛 𝜃
            (16) 

 

Import the elliptical coordination to eliminate the ugly square root sign. Congregate random 
two masses to their center of mass(CM) in order to enable the system to have only two particles 
rather than three because elliptical coordination only allows the existence of two particles.[5] 
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𝑈(𝑥, 𝑦) = −
2𝐺𝑚𝑖𝑚

√(𝑥−
3

4
𝜌)

2
+𝑦2

−
𝐺𝑚𝑖𝑚

√(𝑥+
3

4
𝜌)

2
+𝑦2                        (17) 

 

{
𝑥 =

3

4
𝜌 𝑐𝑜𝑠 ℎ𝛼 𝑐𝑜𝑠 𝛽

𝑦 =
3

4
𝜌 𝑠𝑖𝑛 ℎ𝛼 𝑠𝑖𝑛 𝛽

                               (18) 

 

Plug x and y from equation (18) to equation (17) in elliptical coordination [2]  

 

𝑈(𝛼, 𝛽) = −
2𝐺𝑚𝑖𝑚

3
4 𝜌(𝑐𝑜𝑠 ℎ𝛼 − 𝑐𝑜𝑠 𝛽)

−
𝐺𝑚𝑖𝑚

3
4 𝜌(𝑐𝑜𝑠 ℎ𝛼 + 𝑐𝑜𝑠 𝛽)

 

 

=
−𝐺𝑚𝑖𝑚(3 𝑐𝑜𝑠 𝛽+𝑐𝑜𝑠 ℎ𝛼)

(𝑐𝑜𝑠 ℎ𝛼−𝑐𝑜𝑠 𝛽)(𝑐𝑜𝑠 ℎ𝑎+𝑐𝑜𝑠 𝛽)
                         (19) 

 

Equations (19) (16) (15) (14) have different variables. Selectively use available observational 
data to have enough parameters to solve the problems in the best way by combining these 
equations. explore the stability of Lagrange’s solution by using the simulations in Python. If the 
three masses in the system are equal, the Lagrange’s solution is stable for short period of time, 
but it will not last so long. Figure 6 shows the early stable stage of Lagrange’s solution.  

 
Figure 6. Early stage of Lagrange’s solution 

 
Figure 7. Detailed view of early stage 

 



World Scientific Research Journal                                                      Volume 6 Issue 10, 2020 

ISSN: 2472-3703                                                       DOI: 10.6911/WSRJ.202010_6(10).0038 

307 

Figure 6 is the overlooking picture of Lagrange’s solution. Three orbits in different colors 
overlap with each other so that there is only the red color orbit in the view. After zooming in the 
picture, the details of their orbit. In figure 7, there is already slightly different in their orbits. 
Ideally, the three masses initially located at vertices of an equilateral triangle with proper 
direction of velocity will move in the same circular orbit. With the same radius of the orbit, their 
trace will be exactly overlapped in this case. However, in reality, the small difference of the 
radius of the circular orbit would gradually increase and finally turns out to be an unstable 
system. In simulations, only few situations will last for stable for years— define the stable 
system that the masses do not collide with each other or go away from each other.  

First simulate three equal masses located at vertices of an equilateral triangle with proper 
direction of velocity by varying values of masses. The varying masses in the simulation are in 
the same order of magnitude—109 kg. The varying masses enable us to see the difference of 
the consequences of three smaller masses and three larger masses. Based on previous 
simulative methods, use a rough approach to judge if a system collides or goes away from each 
other in equilateral configuration. Define that if the distance between two masses is larger than 
ten times their original distance, 𝟐𝒂, one particle would probably go away from each other and 
the interactions between the masses are much smaller compared to original forces and if the 
distance between two masses is less than one-tenth of their original distance, it would probably 
collide to each other. Keeping their original distance remaining the same, simulate the situations 
that vary values of the masses over ten thousand times to form Figure 8 below.  

 

 
Figure 8. The life span of different masses 

 

It clearly indicates that the systems including small masses are more stable than the systems 
including large masses. It makes sense that the larger masses require also larger distance to 
keep the system to be stable. The simulative distance, 𝜌 = 1m, only is suitable for the masses 
in 109kg rather than 1010kg. 

The previous simulations focus on finding an optimal value of three equal masses in the 
system. Then vary the three masses respectively so that there is the random difference between 
the three masses in a system. Plot the value of standard deviation of three varying masses in the 
system as x value and the life-span of the system as y value in the following diagram.   
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Figure 9. The life span of difference of the masses 

 

According to the diagram above, there is no notable direct correlation with the standard 
deviation of the masses and the stability of the system. The points are evenly distributed for any 
value of standard deviation of the masses in Lagrange’s solution. It should note that the 
simulative standard deviation of the masses is really small because all the masses are in the 
same order of magnitude. Lagrange(1772) also proposed the Lagrange points, which implies 
that the larger difference of the three masses, also known as the restrict three-body problem, 
can still form the stable system. Therefore, the difference of three masses in the system will not 
affect the stability of the system. Comparing Figure 8, it shows that three equal masses are 
stabler than three different masses within small standard deviation. Note that the three 
different masses with large standard deviation, such as the masses located in Lagrange points 
in the restrict three-body problem, are quite stable 

 
Figure 10. Stimulation with small distances between the masses 
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Figure 11. Stimulation with large distances between the masses 

 

For the third part of the simulation, vary their initial distances while keeping three masses 
equal and constant. There is a peak around x=1, but subsequently the stability drops 
dramatically  immediately. Where the system rises to its peak is varying from the different 
masses. In the  simulation, pick m=2.26e9. It proves that there will always be only one optimal 
distance(x value of the local extreme point in the graph)for three equal masses in the system to 
be the stablest locally. Larger than the optimal distance, the stability of the system increases as 
the distances increase because their interacting gravitational forces decrease as the distance is 
larger. With low interacting forces, the system moves slower and neither collides soon nor goes 
away quickly. Results are put to use the curve_fit in Python to draw the regression analysis of 
Figure 11 in a mathematical expression. However, perhaps due to the effect of the peak around 
x=1, the result failed to draw the regression curve.  

4. FIGURE-EIGHT SOLUTION 

The model and stability of the figure-eight configuration were proposed by Chenciner and 
Montgomery [2001] [3]. The complex motion of figure-eight movements can also be broken into 
two simple situations which are Euler collinear situations and isosceles triangle situations as 
showing below  

 

 
Figure 12. Figure-eight solution [4] 
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In order to explore the stability of the figure-eight solution, need to consider the initial phase 
of three masses. [6] First of all, assume that all three particles have the same mass. If place three 
particles randomly on the eight-shaped orbit, the three-body system will be a chaos. Therefore, 
consider the system as a two-body system and put the one particle on each side to balance them. 
What need to do next is to place the third particles to satisfy the following equations. 

The whole system can be represented as  

 

𝑥1(𝑡) + 𝑥2 (𝑡 +
1

3
𝑇0) + 𝑥3 (𝑡 +

2

3
𝑇0) = 0                      (20) 

 

𝑦1(𝑡) + 𝑦2 (𝑡 +
1

3
𝑇0) + 𝑦3 (𝑡 +

2

3
𝑇0) = 0                       (21) 

 

These equations not only prove the great symmetry in the figure-eight movements in special 
cases but also show the prerequisite of the eight-figure solution. 

One of the most notable features in the figure-eight solution different from the previous 
solution is the feature of the period. Define the eight-shaped planar position function x(0)=(0,0) 
for ∀ x ∈ ℂ, and define the intersecting point in the middle as the origin point. The whole period 
is defined as T, and the small interval is defined as 𝑻𝟎 .Therefore, 12𝑻𝟎=T. The intervals which 
travel between the collinear situation and isosceles situation are equal as proved by Chenciner 
and Montgomery [2001] [3]. It always takes  𝑻𝟎  to travel from the collinear situation and 
isosceles situation. After reaching the position of isosceles situation, three masses also take  𝑻𝟎 
to go back to the collinear situation. Assuming that all masses are equal, it gives some interesting 

conclusions toward the period. Their initial time can set as 𝟎,
𝟏

𝟑
𝑻𝟎,

𝟐

𝟑
𝑻𝟎 , in order to sustain 

their periodic motion. No matter when they travel the sum of the x-coordinate and y-coordinate 
is the same which equals the position of the origin point. That is  

 

𝑥(𝑡) = (𝑥1(𝑡), 𝑥2 (𝑡 +
1

3
𝑇0) , 𝑥3 (𝑡 +

2

3
𝑇0))                   (22) 

 

𝑦(𝑡) = (𝑦1(𝑡), 𝑦2 (𝑡 +
1

3
𝑇0) , 𝑦3 (𝑡 +

2

3
𝑇0))                    (23) 

5. CONCLUSION 

In summary, The results show famous historical special cases in the three-body problem. In 
Euler’s solution, an analytical proportional number is proposed, z, to solve for ω, the angular 
velocity, which saves the time from solving the original three equations simultaneously by 
measuring three values of masses and three values of distances. Simulations of Euler’s solution 
have proved that the difference of the masses has no direct correlation with the stability of the 
system and Euler’s solution is stabler when the difference of initial position is small. By using 
parameters in polar coordination, parameter coordination, Cartesian coordination, and 
elliptical coordination, The results give a better understanding of the system of Lagrangian 
configuration. In the simulative Lagrange’s solution, the standard deviation of the difference of 
masses also has no direct correlation with life-span of the system. For the difference of initial 
positions, the life-span of the system first reaches one peak of stability, followed by a straight 
fall to zero, and again increases gradually as the standard deviation of the initial distance 
increases. Moreover, the result also include the symmetrical and periodical properties in figure-
eight solution.  
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