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Abstract 

Many algorithms of Wireless sensor networks (WSN) are supposed to be bound up with 
the geographic information of the sensor nodes, such as routing protocol, which 
indicates the necessity of sensor nodes localization. In this work, a GPS-equipped UAV 
that moves along the predetermined route is employed to sends signals periodically and 
the sensor nodes with unknown positions receive them. And the approximate distances 
between UAV and sensor nodes are obtained via the Received Signal Strength Indicator 
(RSSI) technique. To alleviate path interference, reduce error, and optimize the 
localization algorithm, the neural network trained by a machine learning algorithm is 
utilized. Then, comparisons between the localization algorithm in this work and 
algorithms of other researches are made and indicate that the neural-network-based 
method that we proposed has the best performance. 
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1. INTRODUCTION 

The localization system is the core component of Wireless Sensor Network (WSN), through 
which the identification and correlation of target event and its data information, nodes 
addressing, management, and query in a specific area can be implemented. The indispensability 
of the localization system can be demonstrated via its function of the appointment of the events 
location and data information collected, and even its promoting effect on the improvement of 
the performance of some routing algorithms, such as Dynamic and Scalable Tree. 

The localization problem in networks can be quantified as the physical location of sensor 
nodes, such as latitude, longitude, and altitude. Generally, the localization algorithm model of 
WSN is to position a group of network nodes, whose location coordinates are unknown, based 
on a limited number of nodes with known coordinates.  

Nevertheless, problems such as restricted energy, fragile reliability, large-scale and random 
deployment of sensor nodes, the limited communication range of wireless modules existing in 
sensor networks put forward high requirements for localization algorithm and technology, 
including the aspects of self-organization, energy efficiency, and distributed computing, which 
will be the reference and evaluation standard to select the most appropriate algorithm. 

At present, UAVs have been utilized to research the technology of two-dimensional 
positioning in WSN. The goal of this work is to study the application of UAVs in the 3-D 
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localization technology of sensor networks and to optimize the positioning algorithm by using 
the neural network trained by several machine learning algorithms, to improve the accuracy. 
The conversion from 2-D positioning to 3-D one is not only as simple as the increase of 
dimension. The specific contents of 3-D localization technology are described later, including 
the establishment of UAVs and their deployment model, the channel model of the conversion 
from signal strength into the distance, the comparison and selection of localization algorithms, 
and the performance evaluation. 

The remainder of this paper is organized as follows. Section 2 covers the literature review on 
distance estimation and localization algorithm. Section 3 describes the system model, including 
UAV deployment and neural network implementation. The performance analysis is given in 
Section 4 in respect of simulation settings, wireless communication channel models, distance, 
and location estimation. At last, the research conclusion and future work are summarized in 
Section 5 and Section 6. 

2. BACKGROUND AND RELATED WORK 

Our proposed localization method includes two separate parts, UAV-assisted distance 
estimation, and neural-network-based localization estimation algorithm. This section 
highlights existing work on both of them. Subsection 2.1 presents a brief development process 
of mobility-assisted localization. Subsection 2.2 describes the background of traditional 
localization estimation algorithms and differentiates these traditional localization algorithms 
from our proposed neural-network-based localization technique. 

2.1. Mobility-assisted Localization 

The localization of a node with the unknown position is reckoned based on the information 
of anchor nodes with the known ones. In the distance-based positioning technology, the location 
of unknown nodes is estimated by using some physical characteristics of the measured signal, 
namely the time of arrival (ToA) [1], angle of arrival (AoA) [2], time difference of arrival (TDoA), 
or received signal strength indicator (RSSI) [3], [4]. Among these parameters, RSSI is the most 
commonly used in several localization techniques for a variety of reasons, such as the simplicity 
of the parameters. In contrast to AoA measurements and time-based measurements that 
require additional hardware and technology, RSSI is available from almost all wireless hardware. 
Thus, RSSI-based localization is a cost-effective solution for most IoT applications. To improve 
positioning efficiency, efforts are taken to employ mobile vehicles that can sense their position 
and move around sensor nodes, regularly broadcasting beacons with their position. The sensor 
node can hear this information and estimate its position. Sichitiu and Ramadurai[5] proposed 
a positioning technique based on the perception of its position by a single mobile beacon. 
Sensor nodes estimate the RSSI values of the received messages to determine their distance to 
the mobile node. Finally, nodes use probabilistic methods to maintain their position estimations. 
In recent years, UAVs have been widely used because they are flexible and can cover the whole 
area. With the rapid development of UAV, more and more work is being done to locate unknown 
equipment [6] and [7] using UAV. Villas et al. [6], for example, used GPS-equipped drones to 
broadcast their geographical location when flying over the monitored area. Using these 3-D 
topographic maps and corresponding RSSI values, the sensor node can calculate its 3D position. 
Yu et al. [7] used UAV to derive the physical topology of the cloud in their cloud-coordinated 
physical topology discovery scheme of large-scale IoT system, to effectively detect events in 
real-time. It should be noted that the UAV aided positioning technology requires an accurate 
range estimation method and precise mobile unit position, which is difficult to obtain in practice. 
However, most of these techniques are discussed under relatively simple models, such as Free 
Space or Dual-ray Ground. To overcome these limitations, we trained our model under terrain 
models using Random Forests to ensure the accuracy of distance estimates. 
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2.2. Localization Estimation Algorithms 

The sensor node estimates the distance to the anchor node according to the RSSI value 
measured. With the reference position and the estimated distance, the sensor node can locate 
itself by using localization algorithms such as multilateration [6]. The author constructs a 
system of equations (at least four equations) from the target nodes and their respective 
distances. After linearization, the system can be solved by linear equations. Also, Savvides et al. 
proposed a simpler method as part of the N-hop multiple extraction algorithm. The advantage 
of the Min-Max method is that it only requires low computational complexity and comparison 
operations. Compared with multilateration and Min-Max localization algorithms, 
multidimensional scaling analysis (MDS) is a more popular localization method. Chen et al. [8] 
proved the feasibility of the classical MDS algorithm for mobile positioning, and further 
proposed the unified framework of the classical MDS algorithm, the improved MDS algorithm, 
the subspace method, and the corresponding three weighted MDS algorithms. Meanwhile, 
according to Kim et al.[9], a mobile Beacon-based localization is proposed using the classical 
multidimensional scaling (MBL-MDS), which contains selection rules to select sufficient 
reference positions in all received decision rules to determine the location of the two candidates 
on the correct node if the given reference position is placed on the same plane to improve 
positioning performance. To reduce the complexity of the proposed technology, some studies 
[10], [11] have explored the use of neural network implementation in WSNs.Specifically, some 
attempts have been made to integrate a single hidden layer feed-forward neural network (SLFN) 
systems into node positioning to make SLFN simpler than deep learning. For example, Ginanjar 
et al. [12] proposed a real-time node location method of UAV based on SLFN.In this paper, the 
positioning area is divided into several blocks of the same size. Two drones broadcast their 
beacon signals in each block through this small area. The system USES SLFN learning algorithm, 
namely extreme Learning Machine (ELM), to predict the position of each node according to the 
RSSI value of two UAVs. However, this method can only estimate the location of sensor nodes in 
a 2-D space scene. Based on the terrain model and SLFN system, a UAV assisted 3-D positioning 
technology is proposed. This method first USES the random forest algorithm to train the 
distance estimation model. The distance matrix between UAV and sensor node is obtained by 
RSSI. Then the feedforward network is used to estimate the location of sensor nodes.  

3. SYSTEM MODEL 

Deployment Of UAV and Sensor Nodes: 

Randomly generate a series of positions within a designated square area. Generate the 
positions at which the UAVs send their signal. 

Distance Estimation: 

Calculate the path loss of the signal between each sensor node and the UAV by the Longley-
rice terrain model. Train a random forest machine learning model to estimate the distance 
based on each of the RSS values. 

Estimate the position of each sensor node: 

Use the data set which includes both the estimated distance between every transceiver and 
the broadcast location of that UAV. Implement selected machine learning algorithms and certain 
non-machine learning algorithms for the position estimation based on the data gathered at the 
last step. Analyze the performance of the implemented algorithms by certain merits such as 
mean localization Error and percentage of sensor nodes with the reliably estimated position. 

 

 



World Scientific Research Journal                                                      Volume 6 Issue 10, 2020 

ISSN: 2472-3703                                                       DOI: 10.6911/WSRJ.202010_6(10).0040 

324 

3.1. UAV Deployment 

Two UAVs traveling perpendicular to one another broadcasting their locations between 
certain time intervals. 

 

Figure 1. Deployment Of UAV 

3.2. Distance Estimation 

I. Feed the Random Forest model with pairs of RSS values and the corresponding distance. 

II. Use the model to estimate the distance between each UAV and sensor node. 

 

 

Figure 2. Random Forest For Distance Estimation 

3.3. Position Estimation-Multilateration 

I. Theoretically, the position of a sensor node can be calculated using a multilateration 
algorithm with at least 4 reference points. 

II. In the scenario of non-ideal distance estimation, the least square method could be 
employed to calculate the position using more than 4 points. 

 

  (𝒙𝟏 − 𝒙)𝟐 + (𝒚𝟏 − 𝒚)𝟐 + (𝒛𝟏 − 𝒛)𝟐 = 𝒅𝟏
𝟐                            (1) 

 

(𝑥𝑁 − 𝑥)2 + (𝑦𝑁 − 𝑦)2 + (𝑧𝑁 − 𝑧)2 = 𝑑𝑁
2 

3.4. Position Estimation-MinMax 

I. Use range to anchor nodes to define a bounding box. 
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II. Use the center of the box as a position estimate and the aforementioned process is done by 
equation 2 [5]. 

 
[𝑚𝑎𝑥

𝑖
(𝑥𝑖 − 𝑑𝑖) ,𝑚𝑎𝑥

𝑖
(𝑦𝑖 −𝑑𝑖) ,𝑚𝑎𝑥

𝑖
(𝑧𝑖 − 𝑑𝑖)] × [𝑚𝑖𝑛

𝑖
(𝑥𝑖 +𝑑𝑖),𝑚𝑖𝑛

𝑖
(𝑦𝑖 +𝑑𝑖),𝑚𝑖𝑛

𝑖
(𝑧𝑖 + 𝑑𝑖)]   (2) 

 

 

Figure 3. MinMax method 

3.5. Position Estimation-Classical Multidimensional Scaling  

Construct a matrix X, rows of which are the coordinates of n known points in 3-D space. 
Construct a squared distance matrix D as 

 

 

Figure 4. Squared Matrix For MDS solving 

 

Obtain a matrix P, rows of which are the relative coordinates of n+1 points in 3-D space using 
MDS as [3]. Best conform P to the known points in matrix X. 

3.6. Position Estimation-Random Forest 

By feeding a Random Forest Model with the same data used for multilateration, it can be 
trained to accurately generate the output position data when applied to the test dataset. 

 

 

Figure 5. Random Forest For Position Estimation 
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3.7. Position Estimation-Neural Network 

I. The shallow network consists of only one hidden layer with 20 neurons. And is trained using 
the Levenberg-Marquardt algorithm (nonlinear least-square optimization), which can result in 
less time for convergence and better accuracy [13]. 

II. The trained network is then saved and used to predict the position of the test data set 
under different simulation settings to evaluate its performance. 

 

Figure 6. Neural Network For Position Estimation 

3.8. Channel Model 

Free space Model: 

 

𝑃𝑟(𝑑) =
𝑃𝑡𝐺𝑡𝐺𝑟𝜆

2

(4𝜋)2𝑑2𝐿
                             (3) 

 

Two Ray Model: 

 

𝑃𝑟(𝑑) =
𝑃𝑡𝐺𝑡𝐺𝑟ℎ𝑡

2ℎ𝑟
2

𝑑4𝐿
                           (4) 

 

Longley-Rice: 

Calculate point to point path loss considering the effect of terrain [14]. 

4. PERFORMANCE ANALYSIS 

4.1. Simulation Settings 

We use a square area to do the simulation. Sensor nodes are randomly deployed at different 
height and position in this area. Then two UAVs fly at a specific altitude along the south and west 
side of the area respectively. The two UAVs fly at a certain speed and they broadcast their 
locations at a fixed time interval. 

In the simulation, we will first generate a relatively denser WSN. In this step, we aim to train 
two sets of models: the models that use RSS values received by the sensor to predict the distance 
between UAVs and sensors and the models that can calculate positions from distances. For the 
first set, we use the simulated RSS values and the real distances between sensors and UAVs to 
train a random forest model to predict the distance. The RSS values are simulated by the 
Longley-Rice model. We also create a simple two-ray model to predict distance from RSS value, 
which helps us to evaluate the performance of the random forest model. Then for the second 
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set of models, we generate a second random forest model and a neural network to calculate the 
positions of sensors. The real distances and the reallocation of sensor nodes are regarded as 
input and output to train the two models. 

In the next step, we generate a sparser WSN in the same area for localization simulation. In 
this step, the UAVs broadcast their positions at a longer interval, so the total signal number that 
they broadcast is lesser than the former step. RSS values simulated by the Longley-Rice model 
are input into the trained random forest model to predict the distances. Finally, the predicted 
distances are input into the neural network and the second random forest model to calculate 
the real positions of sensor nodes. We also apply two conventional algorithms, multilateration, 
and MDS algorithm, to make a performance comparison and evaluate the two AI models. 

Some simulation parameters are shown below: 

a. The square side length is 1000 meters and the area is 1 square kilometer. The USGS 
GMTED2010 terrain data is used in our simulation. The coordinate of the southwest corner of 
the simulation area is 42.3001N, 71.3503W. 

b. The altitude of UAV is 120 meters above the mean sea level. The elevation in the simulation 
area varies from 40m to 90m. 

c. The sensor nodes are 4 meters above the ground. 

d. The transmitter power is 10 Watt. 

e. When we train the models, the density of WSN is 1500 nodes per square kilometer so there 
are 1500 nodes in total. When localization simulation, the density is 400 nodes per square 
kilometer and there are 400 nodes in the area. 

f. When we train the models, each UAV would broadcast 668 signals during its flight. In the 
localization simulation, each UAV broadcasts 65 signals at the same interval during its whole 
flight. 

g. We set the successful localization threshold of the error to be 10 meters. If the localization 
error is greater than this, we would regard the sensor node as an unknown node. 

To observe the performance under different environments, we vary the value of some 
parameters. 

We add uniformly distributed noise to the RSS value, then observe the result with noise from 
0% to 10% of the total RSS value. We also change the number of signals that UAVs broadcast. At 
this time, we set the successful localization threshold to be 20 meters and change the signal 
number from 5 to 105, 10 for each step, to observe the localization performance. 

4.2. Distance Estimation Analysis 

The path loss model is ’Longley-Rice’ which is described in the MATLAB function ‘Propagation 
Model’. It calculates the point to point path loss with specific information of terrain between the 
transceiver [14]. To model this more realistic path loss. It can be shown in figure 7 that two ray 
model is less accurate than the trained random forest model using this more realistic data.  

As is shown in figure 7 the error in distance estimation for the two-ray model increases 
substantially with the height of the sensor node above the ground increases. Although the error 
in distance estimation using a random forest model suffers a small number of fluctuations, its 
error is fixed at around 1-2 meters. Since the random forest model have less chance of 
overfitting if the number of observations is significantly larger than the number of predictors 
[15]. In this case, there is only one predictor against the size of the training data set which is 
1500. 
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Figure 7. Comparison between Two Ray Model and Random Forest Model in distance 
Estimation 

 

 

Fig 8. The mean distance estimation error later introduced to each position estimation 
algorithm 

 

Figure 8 shows the mean distance estimation error for 300 sensor nodes against the 
uniformly distributed RSS noise. This shows that the distance estimation model is influenced 
by the additional noise of the RSS and causing the estimation of a deviation from the real 
distance. 

4.3. Location Estimation Analysis 

Figure 10 shows the mean and maximum localization error against the number of beacon 
positions used. For the MDS algorithm, a significant decrease in error is seen with an increase 
of anchor positions initially and the error decreases gradually while keep increasing the anchor 
positions. That is because the MDS algorithm requires a large size of the matrix (anchor nodes 
positions) to solve accurately the location of each sensor node [9]. However, to construct the 
matrix, a substantial amount of time is required given the size of the matrix. So for this 
computation to be done on the sensor node side can be challenging. The random forest model 
sees an increase of error with an increase of anchor positions, which can be attributed to the 
overfitting of training data. For in this scenario, the number of predictors parallels that of 
observations. 
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(a)                               (b)  

Figure 9. Mean and Maximum Localization Error against the number of anchor positions. (a) 
Mean; (b) Maximum.  

 

      

(a)                               (b)  

Figure 10. Mean and Maximum Localization Error against RSS Error. (a) Mean; (b) Maximum.  

 

The introduced RSS Error is a uniform distribution added on top of the RSS in watts. It 
corresponds to the additional noise on the received signal due to the non-ideal transmitting 
condition. The error of all localization algorithm increases although with different magnitude 
with the increase of RSS error. Among these discussed algorithms, the neural network performs 
the best, lower than that of multilateration and other algorithms in both the mean error and 
many cases of maximum error except some rogue points in figure 10 (b). 

Another metric is introduced for the performance analysis of different localization algorithm. 
If the localization error is more than 10m, we consider it is not accurate enough to yield a valid 
sensor node’s position. In which case the node is considered unknown. 
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(a)                              (b)  

Figure 11. Percentage of unknown nodes against the number of anchor positions and RSS 
error respectively. (a): anchor positions; (b) RSS error 

 

Figure 11(a) plots the percentage of unknown nodes against the number of anchor positions 
used to calculate the position of the sensor node. The percentage of neural network algorithm 
remains the lowest and do not increase or decrease as the increase of anchor positions except 
some fluctuations which is the result of randomness. It is shown that only a small number of 
UAV positions are needed at the sensor node side to achieve a valid estimation of the sensor 
node’s position. This is also the result that one hidden layer feedforward neural network with 
enough neurons can approximate any function with finite response [13]. Unlike that of 
multilateration and all other algorithms, whose error only decreases with the information of 
more anchor positions, which is advantageous considering in a more realistic situation where 
not all the sensor nodes can receive reliably the same large number of UAV positions. 

Figure 11(b) plots the percentage of unknown nodes against the introduced RSS Error 
(uniformly distributed). In all points except one at 10 percent RSS error, the percentage of 
known nodes is the lowest for neural network algorithm compared with all other algorithms. 
This shown the robustness of neural networks even at the presence of large noise factors. 
Besides, the Min-Max algorithm fails under almost all conditions discussed above to accurately 
produce the position of the sensor node. That is due to that the algorithm requires the anchor 
positions to be around the sensor node at all directions to produce a reliable position estimation. 
Since the UAV route is set and quite simple (going straight line and two routes perpendicular to 
one another in Figure 1), the thus generated bounding box cannot be employed to accurately 
generate the position. 

 

 

Figure 12. Average Time For Each Algorithm 
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As for the computational complexity, the preliminary analysis shows average computation 
time run in MATLAB (average 50 times) for the execution of each algorithm discussed, which is 
expected to be a manifestation of the computational requirement of each algorithm. As can be 
shown in figure 10, since the implementation of MDS and Min-Max all requires the construction 
of a comparatively larger matrix for solving, it takes the most amount of time and has the largest 
error. Meanwhile, the neural network does not need much more computational time than 
multilateration and yet can achieve the best result. 

5. CONCLUSION 

In this paper, a 3-D localization method of UAV wireless sensor network node based on a 
machine learning algorithm is proposed. The system USES one or more UAV as the mobile 
anchor, instead of the traditional ground anchor, beacon signal broadcast, easy to locate. In this 
way, a line-of-sight (LoS) communication link can be established between the UAV and sensor 
nodes during the UAV movement, while static positioning technology will encounter non-LINE-
of-sight (NLoS) problems, such as obstacles. Therefore, the technique is suitable for situations 
where ground anchors cannot be deployed in an optimal position. 

This method can be used to calculate the position of the sensor based on the beacon signals 
received from the mobile UAV with estimated efficiency and accuracy. Neural networks trained 
by using several machine learning algorithms will be compared with other proposed systems. 
You can also choose the best algorithm for computer research. 

The analysis of the relevant parameters of the neural network structure and the analysis of 
the performance of multiple UAVs to improve the positioning accuracy and coverage may be 
explored in our further research. 

In the current simulation, the route of the UAV is set, resulting in possibly low signal strength 
of the sensor node from a large distance and render certain algorithms such as Min-Max 
ineffective. As a result, more complex and novel UAV routes should be discussed and its impact 
on the Localization accuracy. And also in this simulation, we assume all sensor nodes are within 
UAV’s communication range at all UAV positions. Communication Range could also be set for 
more realistic conditions. Also, the machine learning model for distance estimation is trained 
using terrain at a certain area, more terrain areas could also be employed to train a Random 
Forest model to improve its generality which has the potential to be universal under all types of 
terrains. 
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