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Abstract 

The project is intended to improve the RRT* algorithm by combining the artificial 
potential field and Multiplicative Weights methods. First of all, for a map composed of a 
random 0-1 matrix, each obstacle point has a potential field, and a virtual force is exerted 
by each point on the vehicle. All the forces are added together to calculate a joint force, 
which represents the recommended direction of RRT expansion. Then, according to this 
recommended direction, we readjust the probability of each sampling node extending in 
different directions to form a new heuristic algorithm for graph-search procedure based 
on the RRT*-connect method. 
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1. INTRODUCTION 

1.1. Motion planning 

The basic task of robot motion planning can be described as the movement from the starting 
position to the target position. This task usually involves a fundamental issue of how to avoid 
obstacles in the given space (geometric path planning). Sampling-based motion planning 
algorithm is an important method for solving the problem, and its core idea is: perform collision 
detection on a single configuration of the robot, establish a database of collision-free 
configurations, and then sample different configurations to generate collision-free paths. 
Typical sampling planning methods include two types: multiple-query method and single-
query planning. The former constructs a road map and then builds a complete undirected graph 
through sampling and collision detection to obtain the complete connection properties of the 
configuration space. After these procedures, it searches through the graph to get a feasible path. 
The latter builds a roadmap locally from a specific initial configuration, extends the tree data 
structure in the configuration space, and finally connects them. Since the distance we extend 
each time is fixed, there is no guarantee that the last extension will just reach the end position, 
and it is more likely to jump back and forth around the end point. Therefore, we set a threshold: 
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if the distance between the new point and the end point of this extension is less than this 
threshold, we think that the planning has been successful. 

1.2. Rapidly exploring Random Tree 

The rapidly exploring random tree (RRT) is known as a sampling-based motion planning 
algorithm with single-query planning that can search through nonconvex, high-dimensional 
spaces by randomly developing a space-filling tree [1] 

The tree begins at a starting configuration (for a two-dimensional graph, it is a point), 
continuously extends the tree data, and eventually connects to the target point. After the 
starting point is determined, the tree continues to grow toward the target point. However, it 
should be noted that due to the existence of random obstacles, if the tree extends toward the 
target point directly, the tree may fail because of “obstacle crashing”. Therefore, the RRT adopts 
a random sampling method: each time, the growth direction is selected with a certain 
probability so that it will extend toward the target point. There is also a certain probability that 
it will randomly choose a direction in the map to extend a distance. The simplest one is that it 
will extend toward the target point with 50 percent probability. There is also a 50 percent 
probability that it will randomly choose a direction to extend a distance. This process is a 
random sampling of the search space. Since there is a certain randomness in each growth, many 
branches will gradually appear in the RRT tree. Then, the algorithm will directly select the point 
closest to each sampling point in the RRT tree and extend it. If no collision occurs during this 
extension and the distance between the new point and all existing points is greater than a 
certain threshold (to prevent growth to the position that the RRT has already explored), the 
method will add this new point to the RRT tree. 

RRT tree development can be biased by expending the probability of the examination of states 
from a particular range. This is accomplished by introducing a small probability of sampling the 
goal to the state sampling procedure. Most practical implementations of RRTs make use of this 
to guide the search towards the planning problem goals. The higher this probability, the more 
greedily the tree grows towards the goal. 

 

 
Figure 1. RRT-planning 

1.3. RRT* and RRT-Connect 

RRT* inherits all the properties of RRT and works similar to RRT. However, it introduces two 
promising features: near neighbor search and rewiring tree operations. Near neighbor 
operations finds the best parent node for the new node before its insertion in tree. Rewiring 
operation rebuilds the tree within this radius of area to maintain the tree with minimal cost 
between tree connections [2]. The RRT-Connect planner is a variation of RRT. It is designed 
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specifically for path planning problems that involve no differential constraints. It has two 
unique properties: it grows two trees from both the start and destination until they meet 
instead of one tree, and it grows the trees towards each other (rather than towards random 
configurations). It is the improved version of RRT for faster convergence. 

Each sampling has a certain probability to move towards any direction or toward the end. 
This probability will obviously affect the search effect. The most direct impression is that the 
greater the probability of random sampling, the more branches of the RRT tree. We developed 
a practical implementation of RRTs by using this to guide the search towards the targets. We 
also applied the multiplicative weights method, which updates the weight of optimal probability 
based on the result of artificial potential field, and, after certain update, it provides more 
effective direction. 

 

 
Figure 2. RRT-connect 

1.4. Application 

The improved RRT algorithm has an improved heuristic algorithm, which will help to make 
the “random” process of RRT more biased. In addition, this will make the RRT star and the RRT 
Connect have more potential use. 

First of all, the RRT can help to minimize the problem of ocean current when the robot 
functions underwater. Moreover, the algorithm can also consider the complex terrain 
environment when finding the route for the vehicle. The result of the algorithm can be reliable 
to consider when choosing the shortest route for the vehicle underwater. 

Secondly, the algorithm can also be used for drones to determine the appropriate route to go. 
However, the current way of RRT takes too much time to find the correct path and will not be 
suitable for the drones. The connect RRT or the RRT star, on the other hand, can compute the 
path in a short period and is well suited for finding the way during a complex environment (Such 
as the forest). Furthermore, the algorithm will also help for the drones to change the path during 
the flight in case of emergencies, which credits to the ability of the RRT* to find the path in a 
relatively short time. 

In addition, some autonomous vehicles can also use the RRT as a way to find the route. In the 
complex real-world situation, finding a route for the vehicles in a short period of time is vital 
for the autonomous vehicles, and the RRT* or the connect RRT is an efficient way to get the 
correct route in a short period of time. First, the car needs to take samples of the real-world 
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situation and generate a graph for the RRT* or the connect RRT to perform. Then, after the graph 
has been generated, the algorithm could be applied and find the path for the vehicles. 

Finally, one of the potentials uses of the RRT is to determine the game level of different games. 
The idea is to provide a visual representation of the game level for the developers of the games. 
The game graph is computed by the algorithm and the resulted states and transactions are 
processed to show the game level. The advantage of using improved RRT is clear as the process 
of clustering will not be needed. At last, the average time taken is calculated and the game level 
is assigned with the game. 

2. ARTIFICIAL POTENTIAL FIELD 

2.1. Brief Overview 

Artificial potential field (APF) method is a classic path planning algorithm. The algorithm 
treats targets and obstacles as objects that have gravitation and repulsion to the robot, 
respectively, and the robot moves along the join force of gravitation and repulsion. For example, 
it transforms the configuration space to a potential field plane and represents the robot (the 
current configuration) as a point in space. If the starting point and obstacle of the robot are 
positively charged, the end point is negatively charged, and the robot is positively charged. The 
robot will move along a certain path to the end point under the action of electric field force and 
avoid positively charged obstacles. 

2.2. Why and How We Apply APF Into the Project 

Because of the largely random nature and the lack of process on the environment of RRT 
algorithm, the efficiency of the algorithm will be negatively affected by its blindness of its 
surroundings. To solve this problem, the Artificial Potential Field algorithm, an algorithm which 
processes and stores information about surrounding obstacles and the target, is implemented 
to improve the efficiency of the algorithm. The APF algorithm does not guarantee to produce 
the shortest path to the target, but it can produce a smoothest and safest path [3]. 

By regarding the moving vehicle object as a point, the Artificial Potential Field algorithm 
simplifies the calculation of the fictional combined potential the vehicle experiences: the 
fictional repulsive potentials exerted by obstacles and attractive potential exerted by the target 
are to be combined to generate the resultant combined potential. With the potential field 
function, the vehicle will move in the direction of descending potential, thus avoiding 
encountering the obstacles. 

In the research paper by Oussama Khatib, the Artificial Potential Field algorithm was 
implemented to facilitate the moving robot to avoid obstacles [4]. The fictional potential energy 
function can be represented by adding the attractive potential and gravitational potential 
experienced by the robot: 

 
                𝑈𝑎𝑟𝑡 (𝑥) = 𝑈𝑔𝑜𝑎𝑙(𝑥) + 𝑈𝑜𝑏𝑠(𝑥)                         (1) 

 

                      𝐹𝑎𝑟𝑡 = 𝐹𝑥𝑑
+ 𝐹𝑜𝑏𝑠                             (2) 

 

In the equation (1), the attractive potential is the sum of the potential from the goal and the 
potential from obstacles. In the equation (2), the attractive force is the sum of the force from the 
robot to the goal and the force by obstacles, and 𝑥𝑑is the goal position. 

 

           𝑈𝑥𝑑
(𝑞) = 0.5𝑘𝑎𝑡𝑡(𝑞 − 𝑞𝑑 )2                           (3) 

 



World Scientific Research Journal                                                      Volume 6 Issue 11, 2020 

ISSN: 2472-3703                                                       DOI: 10.6911/WSRJ.202011_6(11).0039 

289 

𝑈𝑜(𝑞) = {
0.5𝑘𝑟𝑒𝑝(

1

𝜌(𝑞)
−

1

𝜌𝑜
) 𝜌(𝑞) ≤ 𝜌𝑜

0 𝜌(𝑞) > 𝜌𝑜

                    (4) 

 

In the equation (3), 𝑘𝑎𝑡𝑡is the attractive force gain coefficient and 𝑥 and𝑥𝑑represents the 
position of the robot and the goal. In the equation (4), 𝑘𝑟𝑒𝑝represents the repulsive force gain 

coefficient and 𝜌(𝑥) represents the Euclidean distance from the robot to the given single 
obstacle and 𝜌𝑜represents the threshold for maximum distance of influence of the repulsive 
force. 

The fictional forces the robot or vehicle experiences from the goal and obstacles are negative 
gradients of the attractive and repulsive potential functions respectively. Thus, by calculating 
the negative gradients of the attractive and repulsive potential functions, we obtain: 

 
𝐹𝑥𝑑

(𝑞) = −𝑔𝑟𝑎𝑑[𝑈𝑥𝑑
(𝑥)] = −𝑘𝑎𝑡𝑡(𝑞 − 𝑞𝑑)                  (5) 

 

𝐹𝑜(𝑞) = −𝑔𝑟𝑎𝑑[𝑈𝑜(𝑞)] = {
𝑘𝑟𝑒𝑝(

1

𝜌(𝑞)
−

1

𝜌𝑜
)(

1

𝜌2(𝑞)
)(

𝑞−𝑞𝑜𝑏𝑠

|𝑞−𝑞𝑜𝑏𝑠|
) 𝜌(𝑞)𝜌(𝑞) ≤ 𝜌𝑜

0 𝜌(𝑞) > 𝜌𝑜

     (6) 

 

However, the above equation is only for calculating the repulsive force exerted by a single 
obstacle. To compute the combined potential, the net repulsive potentials from all obstacles and 
the attractive potential must be considered and the net repulsive forces and the attractive force 
must be also added to generate the combined force. 

 
𝑈(𝑞) = 𝑈𝑥𝑑

(𝑞) + ∑ 𝑈𝑜
𝑛
𝑖=1 (𝑞)                           (7) 

 
𝐹(𝑞) = 𝐹𝑥𝑑

(𝑞) + ∑ 𝐹𝑜
𝑛
𝑖=1 (𝑞)                            (8) 

 

However, there are two problems with the Artificial Potential Field algorithm: first, it can be 
easily trapped in local minimum points; second, the attractive force is proportional to the 
absolute distance from the robot/vehicle to the goal, leading to the robot encountering 
obstacles when the repulsive force is negligible compared to the attractive force. 

For the first problem, the Artificial Potential Field algorithm is implemented in the RRT 
algorithm with multiplicative weights. Because of the randomness of the RRT algorithm and the 
determining multiplicative weight algorithm, the robot will start relatively randomly after a 
local minimum point is reached, and the local minimum point will not be converged so easily. 

For the second problem, a threshold for the distance of influence of the goal is set to limit the 
infinitely increasing attractive force. 

 

𝐹𝑥𝑑
(𝑞) = {

−𝑘𝑎𝑡𝑡 (𝑞 − 𝑞𝑑) (𝑞 − 𝑞𝑑) ≤ 𝑑

0 (𝑞 − 𝑞𝑑) > 𝑑
                      (9) 

 

In this equation, the attractive force is set as a constant number once the absolute distance 
between the vehicle and the goal is larger than the set threshold, thus effectively limiting the 
increase of the attractive force and the absolute distance from the robot to the goal increases 
infinitely. 
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Figure 3. Pseudocode of APF generation 

3. MAP GENERATION AND FEATURE EXTRACTION 

To test the reliability of our idea, we decided to make matrix with a simple structure (0-1) to 
make our idea backed up with evidence. For testing the performance of our idea easier, we 
generate our matrix randomly with a specific proportion (70%) and then test the connection. 
The merits of testing the connections of the matrix are that testing could provide a matrix where 
there always could be a solution between each pair of available points. Hence, when we test our 
idea, we can select multiple pairs of points in the same matrix for many times without 
consideration of failing to find a way. That enlarges our samples significantly. Besides, we could 
record the best solution of the desired pair of the points so that we could regard the results as 
the expected ones. 

For algorithm of testing matrix full connected, in the testing phrase, we used recurrence to 
crawl all possible way in the all possible directions. The time complexity was current, and m 
represents the possible directions of every points (4 in 2-d, 8 in 3-d) and n means all the 
available points. Results show that it works well in the small sized matrix. 

However, when we apply our idea in practical problem, the map will become more complex 
in size, dimension, etc. Besides, we cannot only use 0-1 matrix to simulate all the maps. In that 
way, the time cost of the recurrence algorithm will rise exponentially. Hence, we need to find a 
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reliable and efficient planning optimization algorithm to replace it. In this project we used Ant 
Colony Optimization, which derives from the ant communication system. [5] 

In an ant group, ants can find the best way to food in various environments because they can 
generate pheromone. Normally speaking, the more concentration of pheromone one path has, 
the more probability it will be chosen. Then the ant will leave the pheromone in that pathway 
as well, increasing the pheromone concentration in that path. Using this mechanism, all the 
pathways could converge the best solution to food in the end. Hence, we could use that 
mechanism to solve the problem. 

Here we are given the more general problem in a complex graph with different path length. 
We have V as the set of points, E as the set of edges. Then we regard η as a heuristic value, which 
relies on the pathways from any pair of points. Besides, we set α as the pheromone, which is 

positively correlated with the pathways as well. The initial value of α we set is
1

|𝑉|𝑀𝑒𝑎𝑛
, where |𝑣| 

represents the number of available points, and mean represents the average length of E. At the 
start of the algorithm we set up m agents (i.e. random selector) and force them to generate the 
path to the destination and leave the pheromone along the path. Then when agent need to go to 
the next available points, we need to make a specific probability distribution to influence their 
choice, which is: 

 

               𝑃𝑟𝑠
𝑘 = {

𝛼𝑟𝑠
𝛽

𝜂𝑟𝑠
𝜀

∑ 𝛼𝑟𝑧
𝛽

𝜂𝑟𝑧
𝜀

                       𝑠 𝑏𝑒𝑙𝑜𝑛𝑔𝑠   𝑡𝑜     𝐽𝑘(𝑟)

0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

                 (10) 

 

Where 𝑝𝑟𝑠
𝑘  is the probability of the ant k in point r choosing the points, 𝐽𝑘(𝑟) presents the 

set of points where ant k in the current location r can choose. Βand ε is the weights of 
pheromone and heuristic value respectively. 

 
Figure 4. Pseudocode of maze creation 

 

From all the math models, we could make the paths for the ants, when ants finish the tours 
(successful or not). We could update the pheromone as follows: 



World Scientific Research Journal                                                      Volume 6 Issue 11, 2020 

ISSN: 2472-3703                                                       DOI: 10.6911/WSRJ.202011_6(11).0039 

292 

𝛼𝑟𝑠 ← (1 − 𝑝)𝛼𝑟𝑠  𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑟, 𝑠)                        (11) 

 
𝛼𝑟𝑠 ← 𝛼𝑟𝑠 + 𝑠𝑢𝑚(𝛼𝑟𝑠) 𝑖𝑓 (𝑟, 𝑠) 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛                (12) 

 

When an iteration ends, all the pheromones will decrease with a specific proportion. And we 
rise the pheromone in the point which is in the current best way. For several iterations, it will 
return a general best solution. 

 

 
Figure 5. Pseudocode of standard maze generation 

 

After going through these, we could generate a stable and testable map dataset. Further, we 
could make a supervised neural network model to pick up the general features of a map without 
knowing the details through iterating. 

4. OVERALL PROCESS OF THE ALGORITHM 

4.1. How We Come up with the Algorithm 

In this section, we will show the specific implementation of this project. The following part 
of report will be presented and organized in the form of a series of problems and how we use 
the advantage of other methods to solve them. In fact, both the RRT and APF themselves are not 
the most advanced and commonly used methods in their respective fields, because they have 
some obvious defects, but some of these shortcomings can be compensated by the advantages 
of another method 

For example: 

The disadvantage of artificial potential field is that it runs slowly and it is easy to trap into a 
non-optimal "local maximum" just like some gradient descent algorithm (In reality, this is 
reflected in that the path will cycle in one place during planning) 

Solution: 
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Figure 6. Local-maximum/minimum 

 

We can use the random sampling of RRT to help the APF, which is trapped in local minimum, 
to escape from the dilemma. Just like the simulated annealing algorithm and other gradient 
descent algorithm falling into the local maximum and minimum value, once the judgment 
mechanism is activated, it will jump out and continue to explore. 

Another example is: 

The biggest defect of the RRT(*) itself is its uncertainty: it cannot guarantee to find the 
optimized path within specified iterations. 

And the solution: 

The guidance of artificial potential field can discard some of the wrong attempts to overcome 
this defect. 

So, we use the APF as the main body of the heuristic guiding mechanism, but When the two 
are combined, we will find many interesting problems. 

4.2. Mechanism of Reattribution 

The macro problem is also obvious: 

what should we do after we get this resultant force at some point in the RRT expansion 
process? 

Obviously, we can extend RRT directly to a given location, but in this way, RRT will lose its 
meaning and is not a random algorithm. So, the weather-forecasting example of Multiple 
Weights Reattribution come into my mind: 

We intend to increase the weight of this resultant force direction and reduce the weight of 
other directions, especially those opposite directions. And in RRT’s case, the “weight” is just the 
probability of generating a new node and adding it to the RRT. But this is just a vague idea so far. 

But when we started writing code, we found it hard to put this idea into practice, because first 
of all 

How should we express this direction in the code? 

If we simply calculate, then it involves trigonometric function and anti-trigonometric function 
and multiple four arithmetic operations, which is very time-consuming. 

And we know that in RRT expansion process, every time we want to create and add a new 
point, we first randomly generate a point on the graph(this ”new node” is not the new node 
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which is going to be added into the RRT, it only serves as a tool to realize “random direction” in 
the most time-saving way), and use the line between this point and another point in existing 
RRT to indicate the direction. And 

In the traditional RRT, once a new random point is set, there will be 50% probability to 
expand toward the new random point and 50% toward the destination point. 

So here comes the next question: 

What should we do if we want to reattribute the probability and also preserve the precious 
time-saving characteristic? 

Our solution is: 

We could get the idea from the example of Modifying the weight of experts according to the 
weather forecast results. We set up 100 angles to represent 100 experts. The resultant force 
calculated before is equivalent to the result of the weather forecast. 

The problem now is: 

How to make a mechanism to set the values of these angles (like experts)?  

We knew that 

A force can be represented by its size(double) and direction(angle), in this case, We intuitively 
felt that these angles that were going to be assigned should be as close to the angle of the joint 
force as possible. That is, the closer to the angle value of the combined force ,the higher the 
probability of being sampled should be; the further to the angle value of the combined force ,the 
lower the probability of being sampled should be. And for the value of the joint force generated 
by the obstacle’s artificial total potential field, how should we deal with it? In fact, that’s very 
simple, the larger the value of the force, then the sampling probability should be more 
concentrated around this, the opposite should be more scattered. 

Therefore, we set the mechanism as follows: 

If you are similar with normal distribution or Gaussian distribution, you will find that ND 
could be used to complete the assignment of probability. 

 

        𝑓(𝑥) =
1

√2𝜋𝜎
exp (−

(𝑥−𝜇)2

2𝜎2 )                         (13) 

 

This is the standard expression of normal distribution. σ is the scale parameter, which is the 
variance of normal distribution. µ is the position parameter. The X range in this is ± PI. µ is the 
angle of resultant force. We made σ inversely proportional to the size of the resultant force. 

And In coding part We originally set σ as π/4. 

And the diagram is showed as follows: 

 
Figure 7. Probability Redistribution 



World Scientific Research Journal                                                      Volume 6 Issue 11, 2020 

ISSN: 2472-3703                                                       DOI: 10.6911/WSRJ.202011_6(11).0039 

295 

The larger the variance of normal distribution σ is, the more dispersed the value of the 
random variables are, the lower or wider the image will be. We also know that σ represents the 
degree of dispersion of the values taken by random variables. The smaller the value, the higher 
or narrower the image, the higher or narrower the value of the random variable. The higher the 
value, the more dispersed the value of the random variable, the lower or wider the image. 

Thus, we let the value of the combined force to be inversely proportional to the variance of 
normal distribution σ. 

Here we have a second coefficient to train: the coefficient between σ and inverse proportion 
of the value of force. 

5. RESULTS AND ANALYSIS 

5.1. Visualization and Analysis of APF and RRT*-Connect. 

We used MATLAB’s mesh function to display the 3D effect of the whole artificial potential 
field. For clarity, we showed the fields produced by attraction and the fields generated by 
repulsion separately and their combination. 

Then we saw the effect of RRT, which didn’t look much different from that of RRT*. 

Next we combined this path with the diagram, and we could clearly observe the obstacle 
avoidance effect of this method 

5.2. Visualization and analysis in ROS’s Wheeled Robot Simulation  

We visualize the actions of the 100 particles (correspond to 100 angle groups (in ND)), But 
because my communication with ROS is not complete, the visualization of these particles has 
some delay, shows the redistribution of weights in the normal distribution that We mentioned 
earlier. Also, we visualizes the application in wheeled robots, the arrows in the video represent 
the RRT expansion path in in the current state (Attention: The visualization takes place after 
the RRT is completed, and the car will follow the path which RRT constructed. In the process, 
the arrow will show the direction of combined force in the nearest node of the current location 
of the vehicle. The different colors indicate the RRT* and Modified RRT we have created). 

5.3. Visualization and Analysis in ROS’s Robot Arm Trajectory Planning 

Then we visualize the application in robotic arms. The DEMO4 require the end of robotic arm 
to touch the red ball and blue ball back and forth recursively, in the process the robotic arm 
should avoid to touch the obstacle (I use cylinder to represent it). In DEMO 5, We just Set the 
starting point and the destination point, and use modified RRT to plan the path and move the 
robotic arm! We can see the result is very satisfying. 

5.4. Surprising Results 

So far, we might not feel that the result of this algorithm is perfect. But In fact, the pictures 
below actually came from two different forms: the picture on the left was the result of the overall 
algorithm, but the picture on the right was another RRT that we run in parallel in the same 
program. The difference between this RRT and the original one is that we canceled the collision 
detection link; that is to say, this RRT achieves natural collision free without collision detection 
at all. This was the most surprising result of this experiment. 
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Figure 8. Surprising results 

6. IMPROVEMENTS 

6.1. Strassen Fast Matrix Multiplication 

We knew that time consumption is vital in RRT path planning, so we tried many approaches 
to do acceleration work. One significant way is to use Strassen Fast Matrix multiplication to 
replace the normal one. It really worked in python, but the result of time cost tended to be 
higher than the original matrix multiplication in MATLAB; the result in MATLAB was opposite 
to what the theory revealed, and after reading the official file of MATLAB, we knew that the 
Matrix multiplication of MATLAB had already been optimized! Simply applying Strassen Fast 
Matrix Multiplication only increased the space complexity of it because Strassen Fast Matrix 
Multiplication needed nested calls which require large contemporary storage. 

6.2. Detail Correction 

What we have just solved are macro problems. Now let’s focus on some details 

What if an end point is close to an obstacle? 

If we do it according to the traditional algorithm, the repulsion force tends to infinity when 
approaching the end point, then RRT is very difficult to get close to the end point, which is 
contrary to our goal. 

So, we add an upper bound to the repulsion function. When the repulsion force is greater than 
this value, we assume that the repulsion force is always this value. 

6.3. Deep Learning of Parameters 

The next part is to use deep learning to improve the parameters 

We had a lot of parameters so far,  

Such as 

The coefficient between the repulsive force and inverse ratio of the square of distance. 

The coefficient between the attraction force and inverse ratio of the square of distance, and 
the number of the power of distance. 

How exactly should we effectively break away from the local maximum value mentioned 
before, which meant that for those directions that are almost opposite to the direction of the 
resultant force, we still had to give them a certain probability value. We divided the normal 
distribution into four regions (corresponding to four 90 degrees region in ± 180 degrees). In 
this part, we set the initial value of 𝜎 as 45 degree. And the coefficient k in 

 

𝜎 =
𝑘

|𝐹|
                                    (14) 
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While |F| is the value of the combined force. 

We knew that for different maps with different characteristics, we should adjust the 
parameters, so we intended to use deep learning to solve this problem. 

We have now built a neural network framework based on CTC + CNN frameworks. After the 
extraction of map features is complete, we can input the generated feature vector into the neural 
network for training. In the future, for the existing maps, we can input the trained model Each 
parameter value is brought into the algorithm. 

7. CONCLUSION 

The traditional original RRT algorithm does not guarantee the solution in theory. Let alone 
the optimal solution, compared with the classical ASTAR algorithm, RRT cannot reasonably 
discard some of the poor historical paths of the past according to the dynamic change of cost 
and RRT after each new node to update his parent node, to some extent to improve the problem. 
Because of the complete randomness of the traditional RRT, it cannot find the optimal path, even 
if there is a certain probability to find, cannot complete the task in a predictable time, so we add 
a certain bias to the random algorithm of RRT, so that it can find the best path while retaining 
the advantages of the RRT in path exploration.  

The results run in MATLAB and Python show that although the above algorithms and 
solutions do not give the optimal path, they can make the final path better than the traditional 
RRT algorithm and discard the collision detection process without causing any inefficiency. At 
the same time, we take the optimization algorithm when calculating artificial potential field, so 
that the time complexity of artificial potential field and collision detection time complexity in 
the same order of magnitude, so the total time complexity has no obvious additional 
consumption. 

In summary, this algorithm provides RRT-series algorithms with a set of feasible solutions 
and ideas. We believe that in the future, after we train the right parameters through machine 
learning, this program will be able to perform better. 
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