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Abstract 

This paper expands Crofton Theorem from ℝ𝟐  to ℝ𝟑  and discovers the relationship 
between the length of differentiable curves in ℝ𝟑  and the integration over the space 
𝐏(ℝ𝟑) of all planes in ℝ𝟑  through integral geometry. During the process, a curve is 
subdivided into segments and the integral of the number of intersection points of the 
segments and plane is taken in the space of all planes in ℝ𝟑. Then by Cavalieri’s Principle, 

𝐈(𝐒 + 𝐫𝟎

→
) = 𝐈(𝐒) (1) and 𝐈(𝐑𝐒) = 𝐈(𝐒) (2) are proved, where 𝐒 + 𝐫𝟎

→
 and 𝐑𝐒  represent 

segment S undergoing parallel shift and rotation, respectively. Eventually, the function 
that includes the surface area of a sphere in ℝ𝟑 and the number of intersection points 
with respect to spherical coordinate is integrated, and the relation between the curve 
length and the integral is expressed by an integer. 
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1. INTRODUCTION 

The application of mathematics in our daily lives has been quite prevalent and common. 
Integral geometry studies the relationship between random variables and geometric quantities 
such as length and area [1]. Over a hundred years ago, Morgan Crofton came up with the Crofton 
Theorem, one of the fundamental results in the field of integral geometry, providing people with 
a formula that associates curve length and the integral of the number of intersection points of a 
curve and lines by an integer 2. The integral is taken over the space of all lines in ℝ2. 

It is known that there also exists a Crofton type formula for differentiable curves in ℝ3. The 
goal of this research is to figure out a formula that includes the length of a differentiable curve 
and the integral of the number of intersection points of a segment and a plane with integral in 
the space of all planes in ℝ3. In order to get the result, a polygonal curve is first subdivided into 
segments. Secondly, through Cavalieri’s Principle, which explains that two solids have the same 
volume if two solids have the same height and the areas of their cross sections are equal at every 
level, it is proved that parallel translation and rotation will not change the integral of the 
number of intersection points of a segment and a plane with integral the space of all planes in 
ℝ3. Then the work proves that integral with constant inside, I(kS), is equal to integral with 
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constant outside, kI(S), for all constant k ∈ ℝ, making it reasonable to subdivide curves into 
segments of any length and to integrate, respectively. Lastly, the function includes the area 
element on the sphere in ℝ3  and the number of intersection points with respect to triple 
integral, each integral representing one element in spherical coordinate that is integrated. And 
the relation between curve length and integral is expressed by an integer. The following 
paragraphs demonstrate the details of how this research obtains the answers through the 
proving process of Crofton Theorem. 

2. PROOF OF CROFTON TYPE FORMULA FOR CURVE LENGTH IN ℝ𝟑 

A plane in ℝ3  can be determined by a point (a,b,c) on the plane, where (a,b,c) has the 

shortest distance d to the origin, and a unit vector N
→

 that is orthogonal to the plane. C is a curve 
in ℝ3, and it will be integrated over the space P(ℝ3) of all planes in ℝ3. The set of all plane P 
having infinitely many intersection points in P ∩ C has measure zero [2], which means the set 
of points are capable of being enclosed in intervals whose total length is arbitrary small. It has 
a property that you can change the value of the function at points in the set without affecting 
the value of the integral of the function. Hence, the part of the integral over the space of all 
planes coming from this subset can be neglected. 

2.1. Parallel Translation 

As it is mentioned before, every plane in ℝ3  can be described by a vector N
→

 , which is 
perpendicular to the plane, and a scalar d, which denotes the distance from the plane to the 
origin. Let C be a polygonal curve in ℝ3, and C is subdivided into segments. Let WS denotes 
the solid in the space of all planes in ℝ that consists of all planes intersecting S in exactly one 

point, where S represents a segment. I(S) = ∫ #(S ∩ P) where P is a plane in ℝ3 and I(S) 
is the integral of the number of intersection points of a segment and a plane, which is taken over 

the space of all planes in ℝ3. Therefore, I(S) is equal to the volume of WS. Then let S + r0

→
 

denotes a parallel shift of S by a vector r0

→
, and I(S + r0

→
) is thus equal to the volume of W

S+r0
→ . 

Fix a vector N
→

 in ℝ3 where N
→

  is the normal vector of a particular point on the sphere S2, 

and consider the subset WS  ∩  (all planes orthogonal to N
→

 ). This set is denoted by AS,N . 

Similarly, A
S+r0

→
,N

 represents the subset W
S+r0

→  ∩ (all planes orthogonal to N
→

). 

Cavalieri’s Principle: If solids are of equal height and their corresponding cross-sections at 
the same level match in areas, their volumes are equal[3-5].  

For solid WS, as the planes are at the same level (height), the area of the corresponding cross-
sections that are parallel to one another remain the same[3-5]. Thus, volume(WS) =
∫ length(AS,N). By the same token, volume(W

S+r0
→ ) = ∫ length(A

S+r0
→

,N
). And A

S+r0
→

,N
 is related 

to AS,N via a parallel shift by a number, which is 
N
→

⋅r0
→

|N
→

|
, the scalar projection of r0

→
 to N

→

. Hence, 

length(AS,N) = length(A
S+r0

→
,N

). Then it is easy to conclude that volume(WS) = volume(WS +

r0

→
). Since I(S) = volume(WS) and I(S + r0

→
) = volume(W

S+r0
→ ), Equation 1 is proved 

2.2. Rotation 

Similar to parallel translation, RS denotes a rotation of segment S with the axis of rotation l 
and an angle θ around axis l. As it is stated in the previous paragraph, I(S) is equal to the 
volume of WS and I(RS) is equal to the volume of WRS . Fix d in ℝ3 where d is the distance 
from the plane to the origin, and consider the subset WS ∩ (all planes orthogonal to d). This 
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set is denoted by AS,d. Similarly, ARS,d refers to the subset WRS,d ∩ (all planes orthogonal to 
d).  

For solid WS, as the planes are at the same distance away from the origin, the corresponding 
cross-sections that are parallel to one another remain the same. Due to Cavalieri’s Principle, 

volume(WS) = ∫ area(AS,d). For the same reason, volume(WRS) = ∫ area(ARS,d). And ARS,d is 
related to AS,d via a rotation around axis l by an angle θ. Hence, area(AS,d) = area(ARS,d). 
Then volume(WS) = volume(WRS)  is reached. Since I(S) = volume(WS)  and I(RS) =
volume(WRS), Equation 2 is proved. 

2.3. Generalize to Real Numbers 

Now put I(S) = ∫ #(S ∩ P) where S represents a segment and P ∈ (space of all planes in 
ℝ3). 

In I(kS) = kI(S)  (3), S stands for a segment in ℝ3  and I stands for the integral of the 
number of intersection points of a segment and a plane. First, Equation 3 where k ∈ ℚ needs 
to be proved. Let k = 3, then segment S is subdivided to three equal pieces where S1=S2=S3. 
Since each piece is obtained by parallel shift of the other and I does not change under parallel 
shift according to the proof of Equation 1 in the previous paragraphs, the equation I(S1) =

I(S2) = I(S3) =
1

3
I(S) can be gained. Moreover, since I(S) = I(S1) + (S2) + I(S3), it is obvious 

that I(3S) = 3I(S). Similarly, k can be generated to any rational number 
p

q
, such as 

3

4
, 

5

7
,. .. 

In addition, rational numbers are dense in ℝ. To specify, if a, b ∈ ℝ and a<b, there exists a 
rational number r ∈ ℚ such that a<r<b. Thus, I(S) depends continuously on the length of S 
and satisfies Equation 3 for all k ∈ ℚ. Moreover, I(S) is completely defined by the x-coordinate 
of its right end, so I(S) can be regarded as f(x). Since rational numbers are dense in ℝ, the 
two continuous functions that agree on a dense set are equal, f(kx) = kf(x) where k can be any 
real number. Hence, Equation 3 is valid when k ∈ ℝ. 

2.4. Results 

Any segment S in ℝ3 can be changed to start at the origin and to lie in the (x,z) plane by 
operations of parallel shift and rotation. These operations change neither I(S) nor the length of 
S. Hence, in this paper’s computation, it is reasonable to assume that S satisfies the segment 
properties. Let L be a segment in the (x,z) plane with length α and the polar coordinate (r,0,φ2). 
Segment L intersects z-axis at (0,0,z) and x-axis at (β,0,0), where β < α. r is the distance from 
(0,0,0) to segment L and φ2 is the angle between x-axis and r in the (x,z) plane. r, part of the 
segment L, and x-axis forms a right triangle with right angle at the intersection of r and segment 
L and hypotenuse from (0,0,0) to (β,0,0). According to Pythagorean Theorem, r2 + r2tan2φ2 =
β2, and β < α. Therefore, the following can be gained: 

 

0 ≤ r2 + r2tan2φ2 ≤ α2  

0 ≤ r2(1 + tan2φ2) ≤ α2 

0 ≤ r2(
cos2φ2

cos2φ2
+

sin2φ2

cos2φ2
) ≤ α2 

0 ≤ r2
1

cos2φ2
≤ α2 

0 ≤ r2 ≤ α2cos2φ2 

0 ≤ r ≤ α ⋅ cosφ2 
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The limit of r is from 0 to αcosφ2. Both the limits of φ1 and φ2 are from 0 to π, and r >

0 for both [0,
π

2
] and [

π

2
, π]. Thus, there are factor 2’s in front of both the integral of φ1 and 

φ2. The sinφ1 factor is contained because it represents area element on the sphere. Also, the 
expression consists of number 1, which refers to the number of intersection point of segment S 
to all planes. 

 

2 × 2∫
0

π
2∫

0

π
2∫

0

αcosφ2sinφ1 × 1drdφ1φ2 

= 4∫
0

π
2∫

0

π
2αsinφ1cosφ2dφ1dφ2 

= 4∫
0

π
2 − αcosφ1 |0

π
2cosφ2dφ2 

= 4∫
0

π
2αcosφ2dφ2 

= 4αsinφ2|0

π
2 

= 4α 

 

Thus, I(S) = 4length(S) is proved. Every differentiable curve C can be approximated by a 

polyline P. If the velocity vector r
→

’(f) ≠ 0  at all points, then the sequence of polylines has 

Length(Pn) → Length(C) as n goes to infinity. From the definition of integral, ∫ ∫ ∫ #(C ∩ P) =

∫ ∫ ∫ 4length(C) can be obtained. Hence, the statement of 3-dimensional Crofton Theorem in 
planar geometry: ∫ ∫ ∫ #(C ∩ P) = ∫ ∫ ∫ 4length(C) is reached. 

3. CONCLUSION 

This paper generalizes the Crofton Theorem for curves in the 2-dimensional plane to the case 
of spatial curves, namely in the 3-dimentional plane, and discovers the relationship between 
the length of differentiable curves in ℝ3 and the integration over the space P(ℝ3) of all planes 
in ℝ3. The work shows that there exists a constant c such that ∫ #(C ∩ P) equals to c times the 
length of curve C, and in ℝ3 finds the association between the curve length and the integral by 
an integer 4. 
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