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Abstract 

This paper discusses the development of autonomous vehicles (AVs) and their social and 
sustainability impact. The development is based on various modern structures and 
technologies, such as perception systems, decision systems and platform manipulation. 
Considering this, AVs will have different impacts on society, the economy and 
sustainability. With the high sensitivity of different distance and classification sensors, 
the response time of AVs is much faster than that of human drivers, which can help to 
develop a collision-free driving. Moreover, AV markets will stimulate technological and 
economic growth. The development of electrified AVs will dramatically decrease 
greenhouse gas emissions and a convenient autonomous transportation system will 
encourage more people to take public transportation, which should optimise the public 
route space. 
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1. INTRODUCTION 

1.1. Innovation 

According to Senator Gary Peters, in the Iraq War, the US military lost more soldiers in 
logistics operations than they did in combat. This is because driving an unarmed fuel truck 
across intricate terrain is extremely dangerous (Thibodeau, 2018). Therefore, in October 2000 
the U.S. Department of Defense announced a national defence authorisation file and said that 
by 2015, one-third of operational ground combat vehicles would be unmanned (National 
Defense Department, 2000). This was the initial motivation for AV innovation.  

1.2. Structure 

Generally, AVs consist of a perception system, a control system and a platform. Perception 
system can detect and classify the external environment where the vehicle operates. The 
vehicle’s control system makes decisions and controls the motion of the vehicle based on 
external environment inputs and vehicle platform manipulation, which deals mostly with 
sensing and AV actuation with the intention of achieving the desired motion (Behere, 2015). 

1.3. Development Levels 

According to Australian institute of traffic planning and management national conference, 
researchers have defined four levels of development. First is function-specific automation, 
which involves one or more control functions, such as auto-breaking and electronic stability 
control. Most recent vehicles have at least one of these functions. In 2019, the US National 
Highway Traffic Safety Administration announced that more than half of vehicles had installed 
an automatic emergency braking (AEB) system. Several high-volume automakers such as 
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Mercedes-Benz and Volvo made 90% of their cars install AEB (Department of Transportation, 
2019). The second level of development is called combined function automation, which involves 
automation of at least two primary control functions designed to work in unison to relieve the 
driver of control. An example of this is adaptive cruise control technology that combines speed 
control, radar detection and lane centring. Some luxury car companies, such as BMW, Lexus and 
Tesla, offer these functions in their cars. The first and second levels relate to the primary status. 
The third level is known as limited self-driving automation, in which vehicles have the ability to 
cede full control of all safety-critical functions under certain traffic environments. However, the 
vehicle requires a driver to monitor its behaviour and, in some circumstances, the vehicle needs 
the driver to take control. Only a few high-technology companies, such as Google, are in this 
stage.  Finally, the fourth level is full self-driving automation in which the vehicle can handle 
any environments and has all safety-critical driving functions. At this stage, true AVs are 
achieved (Davidson, 2015). 

2. TECHNOLOGY 

 
Fig 1. Schematic of a multiple sensor perception system (Chavez, 2016) 

2.1. Perception System 

In the robotics community, there is a commonly heard phrase that ‘Sensing is easy, perception 
is difficult’. (Chavez, 2016). Fig. 1 shows the schematic of the most used perception system (PS). 
The PS aims to detect, classify and track several sets of moving objects that may move in front 
of the vehicle. The moving object input is gathered by three sensors, namely lidar, radar and 
camera. Each object is then depicted by its position, size and class. Class information is gathered 
through shape, speed and visual detection. Lidar and radar data extract kinetic and appearance 
information and only appearance information is extracted from the camera (Fig. 2). These three 
data inputs are taken by using a fusion approach and the final output of the fusion method 
comprises a list of object detections that is used for the tracking module to classify the object 
and estimate the moving object states (Chavez, 2016). 

 
Fig 2. Left: Examples of AVs. Right: Field of view of the three frontal sensors (Chavez, 2016) 
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According to Chavez (2016), there are four types of moving object in particular that may 
appear in front of a vehicle, which are a pedestrian (p), a bike (b), a car (c) and a truck (t). Equ. 
1 shows the basic belief assignment 𝑚𝑙(𝐴), which provides a classification mass function of 
different objects. A is in {p,b,c,t}, and m describes the probability distribution for the class of the 
moving object. The performance factors, ( 𝛼𝑝, 𝛼𝑏, 𝛼𝑐 , 𝑎𝑛𝑑 𝛼𝑡), are used to represent the lidar 

result for detecting pedestrians (p), bikes (b), cars (c) and trucks (t). Respectively, the 
uncertainty factors, ( 𝛾𝑏, 𝑎𝑛𝑑 𝛾𝑐), represent a wrong detection or uncertainty about bikes and 
cars. When a bike is detected, because of laser visibility, the object can still be a part of a car or 
a truck. For this reason, the classification could be bike, car and truck ({b,c,t}). For the same 
reason, when a car is detected, the object may be a part of a truck, so the classification can be 
car and truck ({c,t}). However, pedestrians are small enough to distinguish them from other 
objects and a truck is large enough to be distinguished from others. Finally, in all cases, the 
ignorance hypothesis Ω represents the lack of knowledge and general uncertainty about the 
class (Chavez, 2016). 

 
Equ 1. Lidar probability distribution for the class of moving objects (Chavez, 2016) 

 

The camera classification is based on lidar detection and the technology is known as regions 
of interest (ROI). Lidar helps the camera focus on specific regions of an image. For each interest 
region, appearance properties are extracted and a classifier algorithm, which is based on logistic 
regression, combines all the features and forms a good result (Friedman, 2000). Equ. 2 shows 
the basic belief assignment 𝑚𝑐(𝐴). This equation is based on the previous lidar equation but is 
more complex because objects with relative similar size may appear in one region. Therefore, 
the equation should take account of set, such as {p,b}, {b,c} and {c,t} and add a new factor 𝑐𝑐 to 
indicate camera sensor accuracy (Chavez, 2016). 

 
Equ 2. Camera probability distribution for the class of moving objects (Chavez, 2016) 
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The radar sensor can only detect relative speed. The pedestrian (p) and bike (b) are slower 
than the car (c) and truck (t). Therefore, confidence factor α and β are defined with respect to 
set {p,b} and {c,t} and speed boundary Sp. The basic belief assignment 𝑚𝑟(𝐴) can be shown as 
Equ. 3 (Chavez, 2016). 

 

 
Equ 3. Radar probability distribution for the class of moving objects (Chavez, 2016) 

 

Table 1. PS results on highway, urban area, rural and test tracks (Chavez, 2016) 

 
 

The results for the PS system are shown in Table 1. In test track scenarios, the detection and 
classification are nearly perfect (96-100%). On highways, the accuracy is also good, with cars at 
97.8% and trucks at 96.4%. In urban areas, vehicle detection and classification are still high, 
considering the increased number of moving obstacles and the busy environment. On rural 
roads, less traffic makes the accuracy for pedestrians and cars above 90% but trees confuse the 
system and decrease the correct rate for trucks (Chavez, 2016). 

2.2. Decision System 

After the PS, the object information passes through a decision system (DS). In Fig. 3, the 
prediction module (PM) can predict the different trajectories in which the surrounding vehicles 
may move. The future motion is represented by a probability distribution over multiple possible 
trajectories and each trajectory corresponds to different driver behaviours. The planning 
module can make a decision for the vehicle to execute based on the input from the PM and PS, 
and the decision are the control signals for the vehicle to execute. The planning module contains 
three parts. First is a decision-maker that provides high-level driving strategies. A local 
trajectory planner then plans the best solution for the given circumstance. Finally, a trajectory 
tracking controller can track if the vehicle has followed the planning module and give feedback 
to decision module (Chen, 2018). 

 
Fig 3. Decision system structure (Chen, 2018) 
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There are many different circumstances that require the DS to make a decision. In this paper, 
the line change scenarios mainly focus on introducing how the DS operates. In the DS, speed 
data can fully represent the longitudinal motion because it can be integrated into a space 
position file or it can be differentiated into an acceleration profile. This speed data can be 
represented as 𝑣(𝑡) ∈ 𝑉 𝑤𝑖𝑡ℎ 𝑡 ∈ [0, 𝑇] , where V is a list of possible velocity and 00, T  
represents a time period. The space position file can be written as x(t) and the acceleration data 
as a(t). The future decision can be denoted as 𝑙(𝑡) ∈ 𝐿, 𝐿 = { −1, 0, 1} where l = 0 means no 
changing requirement, l = -1 means turning left and l = 1 means turning right. Therefore, the 
decision-making process can be formulated as an optimisation problem as Equ. 4 shows. 

 

 
Equ 4. Decision-making equation (Chen,2018) 

 

𝐽𝑣 and 𝐽𝑎  represent the costs of velocity and acceleration. 𝑔𝑎  is a constraint for the 
acceleration profile, which sets the bounds for acceleration for passenger comfort. 𝑔𝑣  is a 
constraint for velocity, which sets bounds for velocity due to speed limits. 𝑔𝑥 is a constraint for 
events. These would mainly be caused by traffic signals, surrounding vehicles and merging. The 
result of the optimisation is sent to the control system and the vehicle then executes a decision 
(Chen, 2018). 

Chen (2018) shows two scenarios in his paper (Fig. 4). (a) shows a merging situation where 
a red vehicle (AV) tries to merge into a lane in which a yellow vehicle is driving, where 𝑥0 is 
the merge point. (c) shows the space location data of the red vehicle. The yellow bar shows the 
surrounding vehicle’s movement and after point 𝑥0, the host car cannot move into this area. In 
this scenario, the DS has made two class movements, where one is increasing the speed and 
passing the surrounding vehicle and the other is slowing down and letting the surrounding 
vehicle pass. The final outputs depend on the surrounding vehicle’s movement and the safety 
features of each decision. (b) shows the host car trying to increase speed and changing to the 
left lane. (d) shows the local trajectory generated by the DS (Chen, 2018). 

 

 
Fig 4. Example scenarios (Chen, 2018) 
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2.3. Vehicle Platform Manipulation 

Vehicle platform manipulation mainly contains platform stabilisation components (SC) and 
trajectory execution (TE) components. The task for the platform SCs is to keep the vehicle in a 
controllable state. Unreasonable motion requests from the previous DS will be rejected or 
adapted to maintain the safety and capabilities of the vehicle. For example, in Section 3.2, Fig.4a, 
the DS shows two possible trajectories. If acceleration goes over the speed limit or damages the 
engine, then SC will reject the acceleration command and execute a deceleration plan. TE 
components take input from the previous DS and then execute them. This is achieved through a 
combination of propulsion, steering and braking systems (Behere, 2015). This technology has 
already been installed in some AV platforms, such as Tesla’s auto-park and auto-lane-change 
systems (Tesla, 2019). 

3. IMPACT ON SOCIETY, THE ECONOMY AND SUSTAINABILITY 

3.1. Social and Economic Impact 

The autonomous technology will likely dramatically decrease the occurrence of vehicle 
collisions and fatal crashes. The natural reaction time is 1.44 seconds (Lotz, 2019). Meanwhile, 
tired drivers have a much longer reaction time. (Corfitsen,1994). However, for autonomous cars, 
the refresh frequency of the lidar sensor is 10Hz (0.1s) or more (Behere, 2015). The processing 
speed in recent microprocessors is in gigahertz (nanoseconds). Therefore, through sample 
mathematics, AVs will be at least ten times faster than humans. According to the National 
Highway Traffic Safety Administration (2016), drowsy driving was responsible for 72,000 
crashes, 44,000 injuries and 800 deaths in 2013 (Green, 2018). Based on the available data, 
almost 33% of collisions, especially those involving fatalities, are avoidable if all vehicles were 
equipped with some autonomous technology such as an auto-braking system or a lane-
departure warning (Gao, 2016; Fagnant, 2015). This means that at least 24,000 crashes, 14,666 
injuries and 267 deaths could be prevented through autonomous technology.  

In addition to this, AVs can benefit all of society. AVs are expected to advance mobility for 
groups who are too physically challenged to operate vehicles. Potentially, this could increase 
their social interaction and job opportunities, among many other impactss. (Zhao, 2017). AVs 
also have the potential to improve the driver’s experience. Once drivers can take their hands off 
the wheel, they can spend their time on their computer or phone, meaning that the experience 
of driving would be much less onerous (Davidson, 2015). 

 

 
Fig 5. Global market for automated and autonomous driving, including related services 

(Adnan, 2019) 
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The AV market share is expected to grow exponentially in the next 20-30 years. (Adnan, 2019). 
As Fig. 5 shows, the growth pace will be slower initially as improvements are made to the 
technology and they need to be built to accommodate these changes. Government incentives 
are expected to further accelerate the integration of AVs into the consumer market. In 2030, it 
is expected that the AV market share will be 7% of the total auto market. In 2035, the percentage 
will increase to 17% (Adnan, 2019). 

AVs decrease operating costs and stimulate tourism. Nowadays, most AVs, like those by Tesla, 
are electrically powered. Electric vehicles should have a smaller vehicle operating cost than 
standard internal combustion engine vehicles. Currently, there are more companies and 
universities studying electric power engines than traditional engines. Therefore, the operating 
cost is likely to reduce over time as technology improves and economies of scale expand 
(Davidson, 2015). Guterres (2014) assumes a reduction of 50% in vehicle costs for AVs. 
Furthermore, there is evidence that shows that people take into account travel expenses when 
they make their travel decisions. With lower vehicle costs and a much more comfortable 
travelling experience, travelling spending looks to increase by 10% in 2021 and 20% in 2031 
(Davidson, 2015). Considering this, AVs will likely stimulate the tourism industry over the next 
20 years. 

This will, however, also have some negative effects on society and the economy. AVs all 
communicate with a network that shares a large volume of data, such as data on locations, and 
this will lead to privacy concern. Highly intelligent systems may also lead to failure via malicious 
hacking (Adnan, 2019). In terms of the economic side, AVs may eliminate the traditional vehicle 
field. There are many jobs associated with transportation, including truck drivers, taxi drivers 
and bus drivers. It is likely that, at some stage, all of these jobs could be eliminated due to AVs 
(Davidson, 2015). Furthermore, once AVs are safe enough, this will reduce insurance costs but 
also largely eliminate insurance companies and car repair shops altogether. 
PricewaterhouseCoopers estimate that when AVs become widespread, the total size of the 
vehicle industry will drop by 90% (PWC, 2015). 

3.2. Sustainability Impact 

AVs will likely offer a window of opportunity to improve negative environmental phenomena. 
Vehicle operations are the prime sustainability target because they count for three-quarters of 
greenhouse gas emissions in vehicle life cycles. (Martin, 2019). The development of electrified 
AVs will likely dramatically decrease greenhouse gas emissions. 

AVs will also likely play a significant role in future smart cities. AVs will likely also create a 
socially mobile transportation system, especially for people who are inconvenienced by the 
current system. As mentioned previously, this mobile transportation system will likely make 
much more human resources such as physically challenged individuals and people who are 
afraid to drive. Moreover, AVs will encourage people to take shared autonomous transportation 
system. (Amini, 2018). Autonomous technology is expected to increase the number of cars on 
the road. Therefore, having a shared and convenient autonomous transportation system will 
encourage more people to take public transportation, which should optimise the urban 
transportation systems. In the end, AVs will likely change perspectives regarding sustainability, 
while also increasing mobility and accessibility, as illustrated previously (Davidson, 2015). 

4. CONCLUSION 

AVs are an area of future development for the auto industry because their advantages 
significantly outweigh their disadvantages. Although their use has some negative impacts on 
the traditional auto industry and many jobs will be affected, their use also requires more 
engineers and research involvement, which makes more high technology job positions available. 
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Further to this, the huge AV markets will attract capital and human resources, which will 
dramatically stimulate economic development. In addition to this, accurate sensor detection 
and a fast response time can prevent most of the collisions, saving many lives and preventing 
financial loss. AVs will also play a significant role in future sustainability development. The 
development of electrified AVs will dramatically decrease greenhouse gas emissions and 
convenient autonomous transportation systems will likely encourage more people to use public 
transportation, which should optimise the urban transportation system. 

The advancement of technology in AVs should be more human-centric and consider more 
ethical aspects, such as safety, accountability, economic prosperity and individual rights. Highly 
intelligent control systems will not only take the place of human drivers, but the technology will 
also revolutionise society. When technology goes wrong, critical thinking regarding the ethical 
design and policies can help lead the development of AVs towards a direction that brings the 
largest benefit to all (Adnan, 2019). 
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