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Abstract 

This paper establishes the relation between the Hofer metric and the continuous metric 
on the group of Hamiltonian diffeomorphisms on a class of special Poisson manifolds. 
With the help of the geometry structure of the Poisson manifold and the separate method 
of the Poisson support sets, the estimate of the Poisson displacement capacity is given, 
the inequality between the Hofer metric and the continuous metric is proved. 
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1. INTRODUCTION 

This paper is devoted to studying the relation between the Hofer metric and the continuous 
metric on the Poisson manifolds. Hofer metric is an important bi-invariant metric in the 
development of symplectic geometry. It is defined by Hofer on the Hamiltonian 
diffeomorphisms on the standard symplectic space [2, 3, 4, 5]. Hofer’s construction is based on 
the minimax arguments for the action functional of the Hamiltonian systems. Later, many 
mathematicians are interested in starting research in this field. For example, Viterbo defined a 
bi-invariant metric on the Hamiltonian symplectomorphisms on the standard symplectic space 
by generating functions theory [9], and Polterovich, Lalonde, McDuff researched the 
generalization of this metric on general symplectic manifold [11, 12]. The definition of the Hofer 
metric is complicated and hard to compute, the non-degeneracy of this metric is not obvious. 
So far, there are even no results for the value of this metric on a specific Hamiltonian 
diffeomorphism except the identity map. Hence the extension and comparison of this metric 
becomes a very important topic in the studying of Hofer geometry. Banyaga defined a Hofer like 
metric on the group of symplectic diffeomorphisms by Hodge decomposition of symplectic 
isotopies on a compact symplectic manifold [7]. Han studied the extension of the Hofer metric 
to the identity component of symplectomorphism group, and proved that if there exists some 
diffeomorphism which is unbounded, then the Hofer metric does not extend to a bi-invariant 
metric [8]. When a symplectic map is continuously close to the identity map, does the 
corresponding Hamiltonian function become small enough in the continuous sense? Hofer gave 
an example which says that the above answer is negative [4]. The reason is the lackness of the 
uniformly bounded supports of the Hamiltonian diffeomorphisms. Hofer gave the following 
estimate of the Hofer metric and the continuous metric.  

Theorem1 [4]. For every  , D  

 

( , )d    C diameter supp 0

-1 -
C

  （ ）                        (1) 
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Where C is a constant and less equal than 128. 

Naturally, one will ask, is this result still right on the Poisson manifold? In this paper, we want 
to generalize this result to the Poisson manifold. Recall that Poisson manifold is a generalization 
of symplectic manifold. Poisson, Marsden, Weinstein are pioneers and have laid a great 
foundation for the development of Poisson geometry [1, 6]. There are Poisson diffeomorphism 
and other similar concepts in Poisson geometry. But the Poisson type invariant metric is not 
easy to construct because of the lackness of the variational settings. Until recently, Sun and 
Zhang noticed the possibility of Hofer norm on some Poisson manifold, and defined a metric 
needing some strong assumptions of the Hamiltonian functions on the symplectic leaves [13]. 
T. Rybicki found some sufficient conditions and obtained the existence of Hofer type norm [14]. 
After the existence of Hofer metric on the Poisson manifold, Poisson capacity was established 
by Sun and Liu on a class of Poisson manifold [15]. As far as we know, there are few results 
about the comparison on the Hofer metric and the continuous metric, we will study the relation 
between the two metrics on a special class of Poisson manifolds in this paper. The main theorem 
of the comparison results are the following: 

Theorem 2. Suppose   ,  are the Hamiltonian diffeomorphism on the standard Poisson 

space  
0

( , )n
, the following inequality holds: 

 

( , )d    C 0-
C

                                (2) 

 

Where C is a constant dependent on   . 

2. PRELIMINARIES 

In this section, we will give some elementary definitions in Poisson geometry, more details 
can be found in [1, 4, 6, 10]. First we introduce the definitions of Poisson manifold and Hofer 
type metric. 

Definition 1 [10]. A manifold is called Poisson, if for any  smooth function f , g , h  on the 

manifold, there exists a bracket  on the functions and the following identities hold:  

 

 , ,f g g f= −
 

 

   , , ,f gh g f h h f g= +
 

 

     , , + , , , , =0f g h h f g g h f+                    (3) 

 

A diffeomorphism is called Poisson, if it keeps the Poisson bracket.  

Next we recall the definition of the Hofer metric, for a compactly supported Hamiltonian 

function ( , ) ([0,1] , )H t x C M  , the pseudo-norm is defined as 

 

                    
1

0
( )t tH osc H dt=                              (4) 

 

Here the oscillation is defined as 
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              ( ) max ( , ) min ( , )t
xx

osc H H t x H t x= −                       (5) 

 

Definition 2[5]. Let  be a Hamiltonian diffeomorphism, its symplectic energy is 

 
1( ) inf{ }t HE H  = =                            (6) 

 

For ( )f C M , we define  

 

 1 1 2 2inf , ( )f f f f f f Cas M= = +                       (7) 

 

Here 2 ( )f C M  is a Casimir function. Replaced the norms in (6) by (7), if we assume that 

the restrictions of the Hamiltonian functions on the symplectic leaves are well defined, we can 
get the Hofer type norm on the Poisson manifold. In the following we will make this 
assumptions for the manifold.  

Definition 3 [15]. The standard Poisson space  
0

( , )n
 is defined as following: 

(1) If 2n m= , the standard Poisson manifold is just the standard symplectic space 
2

0( , )m  . 

(2) If 2 +1n m= , for every point in the the 1dimensional space , the symplectic leaf is 2m

dimensional subspace with the standard symplectic form 0  , the restriction of the Poisson 

bracket on the left space is 0. 

3. PROOF OF MAIN RESULTS 

In this part we can give the proof of the comparison results on a class of Poisson manifold. 
We first recall the following definition which is similar with the symplectic case. 

Definition 4. We call sets 1, , kS S  on the standard Poisson space properly separated, if for 

any j jA S  of bounded subsets, there exists a Poisson diffeomorphism   and numbers 

1 2 1ka a a −  such that j（A） are separated by the hyperplanes 1{ }jx a= . 

We now have the following lemma: 

Lemma 5. Assume that 1, , kS S  on the standard Poisson space are properly separated, then 

given 0R  , there exists a Poisson diffeomorphism  such thatdist( ( ), ( ))i jS S R   . 

Proof: If 2n m= , this is the symplectic space, by the results of Lemma 8 in P175 of [4], we 
have the results. If 2 +1n m= , we assume that the hyperplanes are parallel to the last axis, since 
the last axis is transversal with each symplectic leaf. Following the procedure of Lemma 8 we 
finish the proof. 

Lemma 6. Let 1 20= ka a a ,
2 1

1

n

j jv a e +=  1=e （1，0， ，0）. Let 

t

j j jS S tv= +
 

 

1jH y（t,x）=a                                 (8) 
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If 
t

jS（x,y） , using the Lemma 8 in  P175 of [4] again, we know that on the leaf level, the 

restriction of maps 
t

H  acts on each sets by the symplectic way, and the distances between the 

sets 
t

jS  are larger than tR . This finishes the proof. 

Lemma 7. Assume 1 2 k  ， ， ，  are Hamiltonian diffeomorphisms and have properly 

separated supports. Then we have  

 

                1 2 cmax ( )k j
j

E E   （ ）                            (9) 

 

Here c is a large positive constant. 

Proof: According to the proposition in [13], the Poisson energy is invariant under conjugation, 
we now use a trick as that in Lemma 9 of P176 in [4], due to the Poisson structure of the 

standard Poisson space, let =
jj H   and jS be the support. By lemma 8, define 

1

j j   −= , 

the support of j  are disjoint and we have the following identity 

 

                      1 2 1 2=k kE E   （ ）（ ）                         (10) 

 

So the Hamiltonian function of 1 2 k   satisfies 

 

                  1 2 kH H H H= + + +                             (11) 

 

By the definition of the energy, we get the result. 

Recall the Poisson capacity is defined as following 

 

            ( ) sup ( )s
l

c M c l


=                               (12) 

 

Here l M  are the symplectic leaves, sc  is the symplectic capacity. We know that this is a 

Poisson capacity on standard Poisson space. 

Lemma 8. If the Hamiltonian function satisfies supp ( ) [0,1]H U  , then the energy satisfies: 

 

                         e ( )H pE C U （ ）                               (13) 

 

Here e ( )p U  is the proper displacement energy, C is a large positive constant. 

Having this lemma we now need the following estimate. 

Lemma 9. Let id   be a Hamiltonian diffeomorphism, and 0-id
C

   . For every open 

domain in the standard Poisson space, if supp Q   , there exists a Hamiltonian 

diffeomorphism   and positive constant satisfying 

Q Q =
 

supp U   
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e ( )pE C U （ ）                               (14) 

 

Lemma 10. Let id   be a Hamiltonian diffeomorphism, supp U   . If 
2n-1

1 2 1 2( , ) ( , )U a a b b R=   , then 

 

1 2 1 2( , ) ( , )HE C a a b b  （ ）                            (15) 

 

This lemma is a consequence of the above lemma. 

Proof of the main Theorem: Now we give the outline of the proof. We just consider the case 

for 2 +1n m=  , the Poisson coordinates be 1 2 1 2 2 1( , , , , , )m m mx x x y y y z +  , by the geometry 

structure of the standard Poisson space,  we know that the leaves are parallel 2m dimensional  

standard symplectic space. For a Hamiltonian diffeomorphism id  , let a number satisfy 

0-id
C

  then set  

 
2n-1( , )k k kQ a a R R = − +                            (16) 

 

Then we use above lemmas and the estimate for the separated support methods for kQ and 

kE （ ）, we can get the result. 

Remark 1. The key point in our proof is the structure of the standard Poisson space. We 
reduce the Poisson question to the standard symplectic leaf. For other Poisson bracket, it is 
complicated to compute the estimation for the displacement energy. 

Remark 2. From the construction we get that, when a Poisson map is continuously close to 
the identity map, the corresponding Hamiltonian function not necessarily becomes small 
enough in the continuous sense. The example can be defined by  

 

          n

1
( , , ) ( ) ( , )n nH x y z f x x y

n
=                         (17) 

 

On the 3 dimensional standard symplectic space, ( ) ( , )n nf x x y  are defined similarly with 

Hofer in symplectic 2 space. 

4. CONCLUSION 

In this paper we construct an inequality between the Hofer type metric and the continuous 
metric on the standard Poisson space. Using the properly separated method for the Hamiltonian 
diffeomorphisms and the standard symplectic leaf structure, we give some estimation for the 
compound of the Hamiltonian diffeomorphisms and establish the relation between the energy 
and the displacement energy on the standard Poisson space. This inequality answers the 
question of extension from symplectic to Poisson for the comparison result of the Hofer metric. 
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