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Abstract 

It is essential for electrical components to maintain a stable working condition in the 
industrial production process. The detection of various gas concentrations can assist in 
identifying the faulty status. To this end, in this paper, we propose a novel detection 
scheme to improve the efficiency and accuracy of faulty electrical components 
identification based on a gas concentrations dataset. 
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1. INTRODUCTION 

Missing, null, abnormal negative and zero values of explanatory variables are summarized. 
Data for H2 CH4 C2H6 C2H4 respectively contained 14, 28, 81, and 83 zero values, accounting for 
2.29%, 4.58%, 13.24%, 13.56 %, which is relatively small and will not have much impact on 
subsequent analysis. However, C2H2 contains 434 zero values, accounting for 70.92% of the total 
observations. Based on it, the normalization for C2H2 is meaningless and may even lead to 
biased results. Other than this, it is found that 89.89% of C2H2 non-zero observations are faulty 
components, indicating that C2H2 non-zero records may be the main feature of faulty 
components. However, C2H2 cannot act as the only indicator for faulty detection since 6.22% of 
C2H2 zero records belongs to faulty components. 

2. DISTRIBUTION CHARACTERISTICS 

To understand the distribution characteristics of explanatory variables, the Shapiro-Wilk 
normality test, the normal QQ chart, the robust statistics, and the boxplots will be conducted in 
this section. An unbalanced sample distribution can be found while correlation matrix is used 
to explore the dependencies among all variables. 

2.1. Normality Test for Explanatory Variables 

The data can be considered to be approximately normal only when the test statistics are close 
to or equal to 1 in the Shapiro-Wilk test. The test results of the six explanatory variables are 
nearly 0.1 and the p-values are all far less than 0.05, except for the NO2 above 0.9. Therefore, the 
null hypothesis is rejected, and the explanatory variable are not regarded as normally 
distributed data. However, referring to the normal Q-Q chart, NO2 data presents the most 
approximately normal shape, so that a further analysis for it is required. 

2.2. Quantile Characteristics of Explanatory Variables 

The descriptive statistics can be calculated for each explanatory variable using R software. It 
is observed that there are big gaps between the upper quartile and the maximum value for 
variables except NO2, in which the minimum gap is a hundred times than the latter. The main 
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reason is that there are too many extreme outliers above the upper quartile and that the mean 
and standard deviation statistics are not robust but extremely sensitive to outliers. Therefore, 
the location and scale parameters may be overestimated and thus affect the model’s prediction. 
We recalculate robust statistics as follows: 

Median(x) ± 1.58 * IQR / sqrt (n), 

Where IQR is the difference between the upper and lower quartiles, and n is the sample size. 
Given the recalculated maximum and minimum values, we mark the data points that are not in 
the range as outliers. The number of abnormal observations of the gas concentration data are 
127, 83, 66, 78, 0, and 121 respectively. 

As shown in boxplots, the six variables except NO2 present similar distribution patterns. 
There are evident abnormalities under the faulty states such as discharge or thermal while no 
abnormal records exist under the normal status for electrical components. Due to the 
dimensional problem, the concentration of NO2 does not show significant differences under 
various states. Yet, it can be found that its mean level increases as the degree of faulty becomes 
worsen. Under this circumstance, it is still unclear whether NO2 is helpful in predictive models 
so that we leave it as a candidate. 

 

 

2.3. Correlation Analysis Between Variables 

The correlation analysis for each variable pair is conducted, in which not only the 
dependencies of the explanatory variables but also the linear interpretation of explanatory 
variables to the response one can be revealed. Variables with strong correlation are supposed 
to be transformed or removed with the aim of avoiding multicollinearity. According to the 
correlation matrix, it can be seen that the correlation coefficients between variables mainly fall 
into the range [0.5, 0.9] and that the association with the response variable is still weak. The 
results based on Kendall τ correlation coefficient are similar to that of Spearman. 

3. ANOMALY PROCESSING 

3.1. Detection Stage I 

In the abnormal dataset, the above identified abnormal data points are tagged and removed 
the duplicates. 475 data points are tagged in total in the explanatory variable matrix, accounting 
for 12.94% (= 475 / (612 * 6)) of the total number of observations. Among them, the variable 
containing the most abnormal data points is H2, with totally 127 anomalies. NO2 is the only 
variable that contains no exceptions. In fact, the number of cases with at least an abnormal 
variable is 187, accounting for 30.56% (= 187/612) of the total number of observations. The 
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proportion is no more than half of the observation, and it can be still assumed that the 
remaining data can represent the overall characteristics. 

The normal and abnormal datasets are then split. Given the two new datasets, we present the 
frequency analysis of the response variables. There are only 18 faulty-free observations 
(accounting for 9.626%) in the anomaly dataset, remaining 90.37% faulty components. As for 
the normal dataset, 407 components are faulty-free cases (95.765%) while the rest 18 ones are 
faulty (4.235%). The actual fault observations total 187 (115 discharges, 72 Thermal) whereas 
the abnormal one accounts for 169 (108 discharges, 61 Thermal), approximate to 90.37%, 
indicating that the rest 9.63% are in the normal dataset. 

Through a basic anomaly identification process, we can effectively detect around 90% of the 
faulty components, which will save a lot of manpower and resources in practice. Thus, it is 
sensible that the model can only detect the anomalies from the abnormal dataset since they 
have significant differences with those in normal dataset. However, the rest faulty cases have 
trivial distinction with the actual normal ones, which are hard to extract for these models. 
Therefore, aiming for the rest 9.63% faulty components, we have to train a more robust 
identification model. Apart from these, in production activities, the cost of failing to report a 
faulty component is much higher than that of falsely reporting a normal component, so that the 
9.63% missing observations cannot be ignored due to the high recognition rate of 90.37% of 
the basic method. In other words, modeling process is supposed to focus on reducing the false 
negative rate but not only the overall false alarm rate. 

3.2. Detection Stage II 

In the secondary abnormality identification stage, the extracted position for anomaly and its 
statistics are summarized as follows. It is found that 16 of the 39 newly identified observations 
are faulty components, accounting for 41.03% (= 16/39). Though the precision is not so 
significant as in the first stage, the two-stage identification achieves 98.93% (=(169+16)/187) 
coverage of faulty components, in which only 2 cases left out. For this sample data, the two-
stage method can solve the problem of fault detection efficiently. However, it may not suit for 
other datasets. Thus, the subsequent modeling is still based on the results of the first detection 
stage. 

3.3. Alleviate Abnormal Data 

Given that the anomalous data accounts for about 1/3 of the original dataset, data 
information may be lost if it is directly removed. To make the abnormal data also applicable, we 
displace the abnormal data points with the robust maximum values estimated in the previous 
stage. The distribution of the processed dataset is not changed theoretically, with the 
compressed dimensions mainly. 

4. EXTENSIONS 

Three extensive discussions are shown as follows. Whether the seemingly useless NO2 needs 
to be removed, whether there exist leading indicators, and the process control chart for anomaly 
detection will all be revealed in this section. 

4.1. Delete the Explanatory Variable NO2 or Not? 

In the above boxplots, the mean levels of NO2 have no significant variations as other factors. 
Yet, in the following re-drawn boxplots, the distribution characteristics are evidently different 
from the previous one. It is found that the distribution of NO2 has the most significant changes, 
in which the boxplot of the discharge status present higher mean level than the rest two statuses. 
That is, in the newly obtained dataset, NO2 will be an effective indicator to identify the discharge 
status and thus we will not eliminate it in the preprocessing stages in this research. 
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The distributions of the remaining explanatory variables also vary in different degrees. The 
C2H2 for nonfaulty data are all zero and that for thermal or discharge fall in the interval (0, 8.5). 
In particular, C2H4 and H2 can help to distinguish discharge status from the other two. The 
patterns for thermal and nonfaulty are so close that we ought to deal with them through 
modeling. 

 

 
 

 

4.2. Are There Early Warning Indicators? 

Parallel coordinate charts, also called contour maps, can plot the values of all variables for 
observations on the same chart in order to intuitively understand the distribution 
characteristics of each cases and how the overall pattern of the sample dataset. There are still 
many faulty observations in the secondary anomaly detection stage, indicating that indicators 
have different priorities during the fault generation process. 

The fault-free graph patterns of the abnormal dataset and the processed abnormal one is the 
same. Besides, they are also similar to that in original dataset, which explains why these normal 
components are misjudged as abnormal data. However, we can also regard them as potential 
failure components. Even though the failure has not yet occurred, it may be at that edge. In 
practice, troubleshooting of these components can be considered as a precautionary measure. 
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4.3. Constructing Anomaly Detection Control Charts 

Apart from the statistics, statistical process control chart can help achieve real-time anomaly 
monitoring and present visualization results. The single-indicator control charts are shown as 
follows. The red control limits, corresponding to the maximum and minimum robust statistics, 
work as warning lines. Once new components are monitored, the control chart can detect the 
anomaly in time. The control chart can be utilized in the first detection stage, especially for non-
statistical professionals.  

 

 

5. ENSEMBLE LEARNING METHODS 

Several classification and prediction models are selected for comparison and analysis, 
including Back-Propagation Neural Network (BP), Decision Tree (DT), Random Forest (RF), K-
Nearest Neighbors Algorithm (KNN), and Gradient Boost Ensemble Learning method (GB). 
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Evaluation index of model effect includes confusion matrix, accuracy and consistency index 
Kappa, fault identification coverage (the proportion of correctly identified faults to the actual 
number of faults), and the rate of false alarms of normal components (the proportion of 
components that are identified as faults but actually not). 

The results indicate that RF, KNN and GB present the best prediction precision. These models 
show 100% faults coverage for dataset whose abnormal data is removed directly. For the raw 
dataset and the preprocessed dataset, RF and GB also have 100% faults identification rate but 
the false negative rate fluctuates around 1.5%. That is, when we do not process abnormal data, 
RF and GB are preferable methods whereas the KNN would be better if the anomaly is processed. 
Generally, the best model for fault electrical components identification is the Gradient Boost 
method, followed by the Random Forest. Other models will have different applicability under 
various circumstances, especially the preprocessing. 

 

 
Raw dataset Dataset without anomaly Preprocessed dataset 

Accuracy Kappa Missed Accuracy Kappa Missed Accuracy Kappa Missed 

DT 96.59% 94.87% 2 98.98% 98.47% 0 84.62% 76.93% 4 

RF 99.38% 99.07% 0 100.00% 100.00% 0 95.80% 93.71% 0 

KNN 98.45% 97.67% 2 100.00% 100.00% 0 99.65% 99.48% 0 

GB 99.69% 99.53% 0 100.00% 100.00% 0 99.65% 99.48% 0 

6. CONCLUSION 

The detection of abnormal electrical components has attracted numerous research interests 
in recent years [1-5]. In this research, we propose a detection scheme for faulty electrical 
components through multi-step preprocessing and ensemble learning modeling. Preprocessing 
a large number of zero, negative and abnormal values is the key to ensuring effective detection. 
Anomaly diagnosis, as the first step in troubleshooting, significantly improves the efficiency of 
faulty component identification and helps to distinguish the leading indicators. The ensemble 
learning methods present the highest prediction precision among all competitive models. 
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