
World Scientific Research Journal                                                      Volume 6 Issue 4, 2020 

ISSN: 2472-3703                                                       DOI: 10.6911/WSRJ.202004_6(4).0007 

59 

An Algorithm for Motif Discovery in Gene Sequence Study Based 
on Online AP Clustering 

Wei Li1, a, Chunxiao Sun1, b, *, Jiayan Deng1, Weiqin Bao1 and Qing Zhang1 
1College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China. 

alxylw@nwuaf.edu.cn, bschxwky@nwuaf.edu.cn  

Abstract 

The extension of motif discovery to a genome-wide look by Chromatin 
immunoprecipitation combined with next-generation sequencing (ChIP-Seq) technology 
brings to the growth of data, which is hard to deal with using traditional algorithms. In 
this paper, we put forward OAP-Motif algorithm, an algorithm for motif discovery based 
on online Affinity propagation Clustering Algorithm to deal with the ChIP-Seq data set. 
Firstly, we divide the data set into a few blocks, and then use traditional and online AP 
clustering algorithm for analyzing each data block to get candidate motif set. Next we 
adopt expectation-maximization algorithm for refinement to obtain the motif. Finally, 
we verify the algorithm OAP-Motif algorithm via the ChIP-Seq data set. The results show 
that OAP-Motif algorithm is efficient in handling motif discovery in ChIP-Seq data set. 
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1. INTRODUCTION 

Motif discovery is an issue of importance and challenge in studying gene sequence [1]. It is 
extended to a genome-wide look by Chromatin immunoprecipitation combined with next-
generation sequencing (ChIP-Seq) [2]. Compared with traditional algorithm for motif discovery, 
ChIP-Seq enjoys massive data, which hinders the processing of recognizing motif in the ChIP-
Seq data set. Recently, some algorithms have been gradually brought up to cope with motif 
discovery in the ChIP-Seq data set [3-4], like MEME-ChIP [5], HMS [6] and FMotif [7]. All these 
algorithms can be used to handle part of discovery issues, but they are not always effective. 
MEME-ChIP, integrating MEME and DREME, two complementary algorithms for motif discovery, 
only works in part of sequences (e.g. No.600 input sequence) in the ChIP-Seq data set. HMS 
adopts random sampling and exhaustive search based on Gibbs sampling algorithm to improve 
its computational efficiency, but it only using those sequences with good performance when 
testing. FMotif, facing Big Data, is an exhaustive search algorithm of conservative mode based 
on suffix tree. It works well in terms of time in handling short motif, but FMotif needs a space 
of high complexity for mismatching information storage. 

In this paper, owing to adopting the strategy of online algorithm, we put forward to OAP-Motif, 
a new algorithm for motif discovery, aiming to cope with ChIP-Seq data set, which contains 
thousands of sequences. First, we divide the whole data set into a few blocks, and then we use 
traditional and online AP clustering algorithm for analyzing each data block to get candidate 
motif set. Next we adopt expectation-maximization algorithm for refinement to obtain the motif. 
The results show that OAP-Motif algorithm is able to discover motifs efficiently in ChIP-Seq data 
set. 
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2. BACKGROUND 

2.1. Definition 

Definition 1: Given t DNA sequences with length of n defined on the set {A, C, G, T}, that is 
S={sl , s2 , …, st } and two non-negative integers l and d, which meet the condition that 0≤d<l<n, 
motif discovery is to find a string x with length of l, which lets each sequence si contains a string 
xi having a position difference of d with x. The string x is called (l, d)-motif, and xi the motif 
instance of x.  

Definition 2: A string s is a sequence defined on the set of {A, C, G, T}. |s| represents the length 
of the string s. 

Definition 3: Given a string s with the length of n and another string x with the length of l, in 

which l<n. If x is a sub-string of s, x is an l-mer of s, written as lx s  . 

2.2. Online AP Clustering Algorithm 

AP clustering algorithm is an unsupervised Clustering algorithm put forward by Frey and 
others in 2007 [8]. By establishing the similarity matrix for targeted data set, we introduce two 

types of messages, responsibility and availability, in which, responsibility ( , )r i k  refers to the 

transfer of information from data point i to candidate clustering center k, availability ( , )a i k  

refers to the transfer candidate clustering center k to data point i. 

 

{ }' '

k' k
r(i,k) s(i,k)- max a(i,k )+s(i,k )
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Each data in the initial targeted set iterates around responsibility and availability as 

clustering center until the convergence. The clustering result can be obtained via the following 
equation. 

 

 arg max ( , ) ( , )i
k

c a i k r i k= +                           (3) 

 

With the growth of data, it takes increasing time to deal with the whole data set using 
traditional AP clustering algorithm, which is impracticable. Therefore, we put forward online 
AP clustering algorithm. By establishing the relationship of information transfer between the 
new data and existing data, we ensure that both of them are in the same level of information 
transfer to improve the performance of traditional AP clustering algorithm, meeting the 
requirements of dealing with big data. 

Given that there are a similarity matrix ( -1) ( -1)n nS   , a responsibility matrix ( -1) ( -1)n nR    and a 

availability matrix ( 1) ( 1)n nA −  − , we extend ( 1) ( 1)n nR −  −  and ( 1) ( 1)n nA −  −  respectively to n nR   and n nA   

using online AP clustering algorithm, which is showed as follows.  
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                         (5) 

 

Where  arg max ( , )
i n

i s i i


 = and  arg max ( , )
j n

j s j j


 = . 

2.3. Online AP Clustering Algorithm 

Input: ( 1) ( 1)n nS −  − , ( 1) ( 1)n nR −  − , ( 1) ( 1)n nA −  −  

Output: ic  

(1) Compute that similarity matrix. 

(2) Obtain a new responsibility matrix R and a new availability matrix A from the equation 
(4) and (5). 

(3) Update responsibility matrix R and availability matrix A according to equation (1) and (2). 

(4) Conduct the updating until the convergence, and obtain the clustering result via equation.  

3. ALGORITHM 

By using traditional algorithm for motif discovery, we update unknown parameter via 
iteration with a complete data set. Under this case, all data should be given before the input. But 
it becomes harder to directly deal with the whole data set along with the growth of high-
throughput sequencing data. Also, it will affect the accuracy when only handling one sampling 
data set. In this paper, we design a OAP-Motif algorithm, an online algorithm for motif discovery 

based on online AP clustering algorithm. First, we obtain input block inputB  with the size of t 

from the input sequences S, and we divide each input block into dataB  with the size of t  and 

compute their clustering sub-set. Next we obtain the candidate motif set by using traditional AP 
clustering algorithm and online AP clustering algorithm respectively, which is called blocked 
solution. And then we combine the results of each block solution and use expectation-
maximization algorithm to deal with them. We keep the computation of clustering sub-set and 
the following procedure to handle all of the sequences in S. More details are as follows. 

3.1. Obtain the Input Block and Data Block 

We obtain a few inputB   with the size of t according to the order from S, a given input 

sequences set. And then we divide each inputB   into several dataB  with the size of t  . An 

oversized inputB   will impede the computation of initial motif, and an undersized inputB   will 

inevitably depend on new data block.  The size of dataB   should be set according to the 

processing time of algorithm. In this paper, we set t as 3000 and t  as 600, which means each 
input block will be divided into 5 data blocks.  

1
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3.2. Compute Clustering Sub-Set of Each dataB  

We build the clustering sub-set consisting of substring with high similarity. The 
establishment of clustering sub-set is based on the observing fact that the Hamming distance of 
two instances of the same motif is smaller than or equal to 2d and we need to set a reasonable 
threshold value k and make sure that 0 2k d   . In consideration of general conditions, we 

choose the first sequence X1 to be the reference sequence, and all l mer− kx ( 1,2, , )k t= L  to 

be the reference sub-sequence. 

Let ( ) ( ){ }k i l i H kB x , X  = y : y X , d x , y k    represents the candidate motif set of kx   in

( )iX i = 2, ..., t . 

Let 
1

2

( , ) { } ( , )
n l

k k k i

i

C x X x B x X
− +

=

=  U   represents the set of all the sequences of which the 

Hamming distance with kx  is smaller than or equal to k and ( , )k dataC x B  is the clustering sub-

set of dataB . 

3.3. Blocked Solution 

We conduct the clustering analysis for each clustering sub-set of dataB  , taking into 

consideration historical information of and the effects of new data on estimated parameters. 
Therefore we put forward the blocked solution. We use traditional AP clustering algorithm and 

online AP clustering algorithm to deal with clustering sub-set of dataB , which are respectively 

called closed-form solution and online solution. And then we obtain the candidate motif set of

dataB , ( , )candidate k dataC x B . 

3.4. Cluster Refinement Via EM Algorithm 

Traditionally, we obtain different local optimal solutions via convergence because of the 

uncertainty of initial condition. In this paper, we choose ( , )candidate k dataC x B   as the initial 

condition of each dataB , and ensure that we obtain one local optimal solution. More details are 

as follows. Estimate hidden variables of each l-mer 

 
( )

,( )

, 1
( )

,
1

( | 1, )

( | 1, )

T

i i jT

i j n l
T

i i j
j

p X z
Z

p X z




− +

=

=
=

 =
                             (6) 

 

Re-estimate the value of pω,m 
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In these there equations, let 1m =  to avoid the emergence of zero probability. 

Through Cluster refinement via EM Algorithm, we obtain k  , the base distribution of each 

( , )candidate k dataC x B  and related target function kQ . And then we find the maximum value of k , 

written as max . Next we compute the Log Likelihood of all l-mer in each sequence, in which the 

maximum one is the instance of candidate motif. 

 

( )max ,
1

log | max log
l

k w m
m

p x p
=

=                           (10) 

4. THE RESULT AND ANALYSIS 

To verify OAP-Motif in this paper, we choose 12 groups of mES cells of mouse, Nanog, Oct4, 
Sox2,Esrrb,Zfx,Klf4,c-Myc,n-Myc,Tcfcp21l,Smad1,STAT3and CTCF to conduct an experiment[9]. 
The Matlab code is used to implement the OAP-Motif algorithm under the Windows system 
environment. The test environment is 2.67 Hz CPU and 4 GB memory. 

 

Table 1. The testing result of mES data 

Data set(seq#) Predicted motif Literature 

c-Myc(3422) 
 

 

CTCF(39609) 
 

 

Esrrb(21647) 
  

Klf4(10875) 
 

 

Nanog(10343) 
 

 

n-Myc(7182) 
 

 

Oct4(3761) 
  

Smad1(1126) 
 

 

Sox2(4525) 
  

STAT3(2546) 
 

 

Tcfcp211(26910) 
 

 

Zfx(10338) 
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In order to better show the performance of the algorithm, we compare the motif published 
by the WEEDER algorithm used by Chen et al. with the method in this paper [10]. In order to 
grasp the similarity between the prediction motif and the published data, a method of 
expressing statistical significance as a LOGO chart is adopted [11], which is also a widely used 
comparison method now. The picture shows the comparison between the main motif found by 
the algorithm and Chen's published motif. It can be seen that the algorithm in this paper can 
effectively find the main motif in these real data. 

5. CONCLUSION 

In this paper, we propose an algorithm for motif discovery, OAP-Motif, on large-scale ChIP- 
Seq data, which can solve high-throughput data sets by combining traditional AP clustering 
algorithms with online AP clustering strategies. In the experiment using ChIP-Seq data from 
mouse embryonic stem cells, we prove that the OAP-Motif algorithm can find motifs in large-
scale ChIP-Seq sequences. However, these motifs often have different functions in gene 
sequences, and their functionality needs to be verified in further experiments. 
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