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Abstract	

In	the	conventional	meshing	stiffness	calculation	model,	it	is	usually	assumed	that	the	
root	 crack	exists	only	 in	 the	 root	portion	of	 the	 tooth.	However,	during	 the	meshing	
process,	 the	 root	 crack	 extends	 under	 the	meshing	 force,	 and	when	 the	 root	 crack	
extends	into	the	base	part	of	the	gear,	the	meshing	stiffness	of	the	cracked	tooth	and	the	
dynamic	response	of	the	gear	system	are	different	from	the	case	when	the	crack	exists	
only	in	the	root	part.	Little	research	has	been	done	to	investigate	the	effect	of	the	root	
crack	on	the	meshing	stiffness	and	dynamic	response	when	the	crack	extends	into	the	
gear	matrix.	Therefore,	an	improved	model	for	calculating	the	mesh	stiffness	of	cracked	
gears	is	proposed	in	this	paper,	in	which	the	gear	base	stiffness	and	gear	tooth	stiffness	
are	calculated	separately	when	the	root	crack	is	considered	to	extend	into	the	gear	base.	
Then,	the	accuracy	of	the	proposed	model	is	verified	by	the	finite	element	method	(	FEM	).	
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1. INTRODUCTION	

Gears	 are	 an	 important	 basic	 component	 of	mechanical	 equipment.	 Most	major	 types	 of	
mechanical	 equipment	 are	 driven	 by	 gears.	 In	 gearing,	 the	 meshing	 stiffness	 is	 the	 main	
dynamic	 excitation	 in	 the	 gear	meshing	process.	However,	 the	 structure	 of	 the	 gear	 train	 is	
becoming	increasingly	complex,	the	working	environment	is	relatively	harsh,	and	the	gear	train	
is	prone	to	various	failures	throughout	its	life	cycle.	Among	them,	cracking	is	the	most	common	
failure	mode.	Therefore,	 it	 is	 very	 important	 to	accurately	 calculate	 the	meshing	 stiffness	of	
gears	 containing	 cracks	 in	 order	 to	 accurately	 estimate	 the	 life	 of	 gears	 as	well	 as	 for	 fault	
diagnosis.	
Since	 the	middle	 of	 the	 last	 century,	 analytical	 methods	 have	 received	 a	 lot	 of	 attention	

worldwide	due	 to	 their	 high	 computational	 efficiency	 and	 acceptable	 agreement	with	 finite	
element	 results	 in	 the	calculation	of	 gear	mesh	 stiffness.	As	 for	analytical	method,	 the	most	
commonly	used	is	the	energy	method.	Weber[1],	Cornell[2],	Yang[3],	Tian[4],	Sainsot[5],	and	
Shao	et	al.[6]	finally	determined	the	gear	stiffness	as	the	sum	of	five	stiffnesses	including	gear	
body	stiffness,	compression	stiffness,	bending	stiffness,	shear	stiffness,	and	Hertzian	contact	
stiffness	by	continuously	refining	the	energy	method.	The	calculation	of	the	stiffness	of	spur	
gears	 containing	 crack	 is	 basically	 done	 on	 the	 basis	 of	 the	 energy	method.	Wang	 et	 al.[7]	
analyzed	 the	 dynamics	 of	 tooth	 crack	 and	 obtained	 the	 mesh	 stiffness,	 load	 sharing	
performance	and	mesh	characteristics.	Chaari	et	al.[8]	proposed	the	calculation	model	of	gear	
tooth	peeling	and	fracture,	and	studied	the	mesh	stiffness	and	dynamic	characteristics	caused	
by	 gear	 failure.	 Chen	 et	 al.[6]	 studied	 the	 dynamic	 response	 of	 cracked	 spur	 gears	 and	 the	
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influence	 of	 crack	 depth,	 established	 the	mesh	 stiffness	 calculation	model	 of	modified	 spur	
gears	with	tooth	profile	cracks,	and	proposed	a	non‐uniform	distribution	along	the	tooth	width.	
The	analytical	model	of	the	mesh	stiffness	of	the	root	crack	is	improved	on	the	basis	of	the	two‐
dimensional	analytical	formula	proposed	by	Sainsot[5],	and	the	influence	of	the	root	crack	on	
the	stiffness	of	the	gear	body	can	be	calculated.	Pandya	and	Parey[9]	used	PEM	and	variable	
crack	 intersection	method	to	evaluate	 the	 total	mesh	stiffness,	and	proposed	the	cumulative	
reduction	index	to	evaluate	the	influence	of	gear	parameters	on	the	mesh	stiffness	of	cylindrical	
gear	 with	 cracks.	 Wan	 et	 al.[10]	 used	 the	 improved	 mesh	 stiffness	 to	 study	 the	 dynamic	
response	of	the	gear‐rotor	coupling	system	when	the	gear	crack	appeared	on	the	gear	teeth.	Ma	
et	al.[11]	studied	the	dynamic	characteristics	of	gear‐rotor	system	under	the	condition	of	tooth	
cracking.	The	time‐varying	mesh	stiffness	of	CPT	and	CPR	gears	was	obtained	by	FE	method.	
The	analytical	formula	for	calculating	the	time‐varying	mesh	stiffness	of	CPT	gears	was	derived,	
and	 the	 dynamic	 response	 of	 gears	 under	 crack	 conditions	 was	 analyzed.	 Chen	 et	 al.[12]	
considered	the	reduction	of	wheel	stiffness	caused	by	the	change	of	effective	area	between	the	
tooth	root	circle	and	the	rim	circle,	and	proposed	the	calculation	formula	of	CPR.	Liang	et	al.[13]	
calculated	the	mesh	stiffness	of	the	cracked	planet	gear	system.	
Among	the	previous	work,	the	changes	of	body	stiffness	caused	by	crack	penetrating	into	the	

gear	 body	were	 not	 considered.	 In	 this	 paper,	 energy	method	 and	 analytical	 finite	 element	
method	 were	 combined	 to	 explore	 the	 effects	 of	 three	 different	 crack	 depths	 on	 the	mesh	
stiffness	of	gear	pairs.	

2. THE	IMPROVED	MESH	STIFFNESS	CALCULATION	MODEL	OF	GEAR	

2.1. The	exact	tooth	profile	parametric	equation	considering	the	machining	process	

The	proposed	stiffness	calculation	model	of	the	gear	is	shown	in	Figure	1.	Considering	the	
actual	working	condition	of	the	gear,	the	gear	is	connected	to	the	gear	shaft	by	spline.	Therefore,	
in	this	paper,	the	inner	hole	of	the	gear	is	fixed	and	the	energy	method	in	material	mechanics	is	
used	to	calculate	the	meshing	stiffness	of	the	gear.	The	fixed	nodes	are	evenly	distributed	on	the	
inner	holes,	 ݊	 ሺ݊ ൌ 2௞ାଵ, ݇ ൌ 1,2,3… ሻ	 represents	the	number	of	fixed	nodes.	
	

 

Figure	1.	Model	of	a	normal	gear	tooth	
 

As	showen	on	Figure	1.	Rejoin	tooth	center	line	with	 ܻ	 axis.	The	 	ܥܦ segment	represents	
the	 gear	 body,	which	 are	 expressed	 as	 Eq.(1).	 Section	 		ܤܥ is	 a	 dedendum	 transition	 curve,	
which	are	expressed	as	Eq.(2).	Section	 	ܣܤ is	an	involute	curve,	which	are	expressed	as	Eq.(3).	
Nodes	fixed	on	the	inner	hole	are	numbered	counterclockwise	from	the	rightmost	end	of	the	
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inner	hole,	the	node	at	the	right	end	is	numbered	 1,	so	number	of	the	leftmost	node	is	 ݊ ⁄ 2 ൅
1	.	 		௔ܨ and	 		௕ܨ are	 the	 two	 perpendicular	 component	 forces	 of	 the	mesh	 force.	 		௉ݔ and	 	௉ݕ
represent	the	 	and	coordinate‐ݔ 	point	contact	the	of	coordinate‐ݕ ܲ.	 	஻ݔ is	the	 	coordinate‐ݔ
of	the	point	 	.ܤ 	஼ݔ is	the	 	point	the	of	coordinate‐ݔ 	.ܥ 	ݔ is	the	 	midpoint	the	of	coordinate‐ݔ
of	 any	 cross	 section.	 ௫݂ሺ݅ሻ		 stand	 for	 the	horizontal	 support	 reaction	of	 any	 fixed	node,	 and	
௬݂ሺ݅ሻ	 stand	for	the	vertical	support	reaction	of	any	fixed	node.	 	௜௡ݎ indicates	the	radius	of	the	
shaft	hole,	 	௕ݎ and	 	௙ݎ refer	to	the	radius	of	the	base	and	dedendum	circle.	
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Where	 	ߛ represents	the	angle	between	the	radial	diameter	of	any	point	and	the	 	.axis‐ݔ
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Where	 	ݎ is	the	radius	of	the	indexing	circle,	and	the	value	range	of	the	independent	variable	
	ᇱߙ is	 ߙ ൑ ᇱߙ ൑ ߨ 2⁄ ;ܽ,	 ܾ	 and	 	ఘݎ represent	tool	parameters.	
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Where	 	௜ݎ is	the	direction	of	any	point	on	the	involute;	 	ݖ is	the	number	of	teeth	of	the	gear;	
	ߙ is	the	pressure	angle	of	the	indexing	circle;	 	௜ߙ is	the	pressure	angle	at	any	position	on	the	
involute.	

2.2. The	meshing	stiffness	of	gear	was	calculated	by	energy	method	

The	potential	energy	of	the	gear	tooth	can	be	calculated	by	Timoshenko	beam	theory.	The	
bending	energy	 ܷ௕,	axial	compressive	energy	 ܷ௔	 and	shear	energy	 ௦ܷ	 stored	in	a	tooth	can	
be	calculated	as	
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The	gear	body	is	an	important	part	connecting	the	shaft	and	the	gear	teeth.	It	is	an	elastic	
body	 collectively.	 When	 the	 gear	 teeth	 are	 loaded,	 the	 gear	 body	 will	 also	 bear	 the	
corresponding	torque,	resulting	in	the	elastic	deformation	of	the	body.	Based	on	Muskhelishvili	
theory,	Sainsot	and	Velex	regard	the	gear	body	with	shaft	holes	as	a	deformable	elastic	ring,	and	
propose	a	 two‐dimensional	analytical	 formula	 to	calculate	 the	deformation	of	 the	gear	body	
under	load.	In	this	paper,	the	finite	element	theory	and	the	iron	mosinker	beam	theory	are	used	
to	divide	the	gear	body	into	several	elements,	and	then	the	energy	method	is	used	to	calculate	
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the	 integral	 formula,	 so	 as	 to	 obtain	 the	 elastic	 deformation	 stiffness	 of	 the	 gear	 matrix.	
According	 to	 the	 finite	 element	 simulation	 results,	 the	 calculation	 results	 of	 this	 paper	 are	
obviously	better	than	those	of	Sainsot	and	Velex.	
As	 showen	on	Figure	1.	When	 the	number	of	 fixed	nodes	 in	 the	 gear	 shaft	 hole	 is	 ݊	,	 the	

integral	of	the	gear	body	can	be	divided	into	 ݊ 2⁄ ൅ 1	 section.	Assuming	that	the	force	of	gear	
meshing	 is	unit	 force,	 the	 formula	 for	calculating	 the	stiffness	of	gear	body	can	be	obtained	
according	to	Eq.(4),	as	shown	in	Eqs.(5)‐(7).	
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Where	 ݅	 is	the	integral	on	the	 ݅	 side;	 	஼ݔ represents	the	 	intersection	the	of	coordinate‐ݔ
of	the	dedendum	transition	curve	and	the	dedendum	circle,	which	are	expressed	as	Eq.(8).	 	ଵ௫ܣ
represents	the	cross‐sectional	area	at	any	point	in	the	gear	body,	which	are	expressed	as	Eq.(9).	
	ଵ௫ܫ represents	the	moment	of	inertia	of	the	section	at	any	point	in	the	gear	body,	which	are	

expressed	as	Eq.(10).	
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In	 Eq.(5),	 		௫ሺ݅ሻܯ and	 	௫ܯ 	are	 the	 moment	 at	 the	 midpoint	 of	 any	 section,	 which	 are	
expressed	as	
	

	          2

2 2

2 2
cos 1 sin 1

n i

x y in x inn i
M i f j x r j f j r j

n n

 

 

                             
 	 (11)	

 

	  x a p b pM F y F x x   	 (12)	
 

In	Eq.(6),	 	௫ሺ݅ሻܨ is	the	horizontal	force	used	in	the	 ݅௧௛	 integral,	which	are	expressed	as	
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In	 Eq.(7),	 		௬ሺ݅ሻܨ is	 the	 vertical	 force	 used	 in	 the	 ݅௧௛		 integral,	 which	 are	 expressed	 as	
Eq.(14);ܩ	 represent	shear	modulus,	which	are	expressed	as	Eq.(15).	
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The	total	energy	stored	in	the	gear	body	is	the	sum	of	the	three	deformation	energies,	which	
can	be	expressed	as	
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Where	 ௙ܷ	 represents	the	total	energy	of	the	gear	fillet	foundation.	

According	to	the	relationship	between	energy	and	stiffness,	the	stiffness	of	gear	body	can	be	
expressed	as	
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Where	 ௙݇	 represents	the	fillet	foundation	stiffness	of	gear.	

The	deformation	of	tooth	part	is	caused	by	meshing	force,	and	the	elastic	deformation	energy	
is	 formed	by	 superposition	of	 transition	 curve	part	 and	 involute	part	of	 tooth	 root,	 and	 the	
calculation	formula	as	
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Where	 	௜௫ܣ represents	the	cross‐sectional	area	of	the	tooth	at	any	position,	 ௜௫ܣ ൌ 	௜௫ܫ;ݓ௜ݕ2
is	the	moment	of	inertia	between	the	tooth	profile	and	the	neutral	surface	of	the	tooth	at	any	
position,ܫ௜௫ ൌ ௜ݕ2

ଷ3/ݓ	;݅ ൌ 2,3		 are	 the	dedendum	 transition	 curve	 region	and	 involute	 curve	
region	respectively.	
For	 the	 convenience	 of	 calculation,	 angular	 coordinates	 are	 adopted	 to	 represent	 each	

position,	and	the	coordinates	of	the	involute	part	can	be	expressed	as	
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Where	 		ଶߚ is	 the	base	 circle	half,ߚଶ ൌ ߨ ⁄ݖ2 ൅ tanߙ െ 	;	ߙ 		ߚ represents	 the	 angle	between	
the	meshing	force	and	the	vertical	direction.	
The	derivative	of	the	angles	of	Eqs.(21)	 and	 (2),	respectively,	can	be	expressed	as	 	
	

	    3 2 cosbdx r d f d        	 (22)	
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Substituting	Eqs.(22)	 and	 (23)	 into	Eqs.(18)‐(20),	the	bending	,axial	compressive	and	shear	
stiffness	are	calculated	as	
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When	 the	 teeth	 are	 meshing,	 contact	 deformation	 exists	 between	 the	 two	 teeth	 at	 the	
meshing	point,	according	to	The	Hertz	contact	theory,	the	contact	deformation	of	two	meshing	
gear	teeth	is	regarded	as	two	isotropic	elastic	cylinders	contacting	at	the	meshing	point	and	
deformed	 by	 extrusion.	 Yang	 and	 Sun	 used	 the	 first	 two	 terms	 of	 the	 square	 root	 binomial	
expansion	to	approximate	the	square	root	and	calculate	the	Hertz	deformation.It	is	verified	that	
the	 accuracy	 of	 the	 results	 obtained	 by	 the	 approximate	 method	 is	 more	 than	 99.5%.The	
Hertzian	contact	stiffness	of	the	tooth	surface	can	be	calculated	by	
	

	
24(1 )h

Ew
k







	 (27)	

 

Where	 	ܧ is	the	elastic	modulus	of	tooth	material;ߤ	 is	the	Poisson's	ratio	of	tooth	material;ݓ	
is	the	contact	width	of	the	gear.	According	to	Eq.(27),	it	can	be	obtained	that	the	Hertzian	contact	
stiffness	is	only	related	to	the	gear	material	and	contact	width.	In	spur	gears,	the	gear	contact	
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width	is	equal	to	the	tooth	width	and	remains	constant	during	the	meshing	process,	that	is,	the	
Hertzian	contact	stiffness	is	a	constant	value.	
In	order	to	ensure	the	continuity	and	smoothness	of	transmission	motion	of	gear	meshing,	

the	contact	degree	of	gear	pair	must	be	greater	than	 1,	that	is,	the	meshing	process	of	gear	pair	
is	a	process	of	single	tooth	and	double	tooth	or	even	multiple	pairs	of	teeth	meshing	alternately	
at	 the	 same	 time.	 Firstly,	 it	 is	 necessary	 to	 analyze	 the	 relationship	 between	 the	 meshing	
stiffness	of	a	single	pair	of	gear	teeth	and	the	stiffness	of	a	single	gear	tooth.	
When	a	single	pair	of	gear	teeth	is	loaded,	the	deformation	energy	is	the	sum	of	five	kinds	of	

deformation	energy,	which	can	be	expressed	as	
	
	 m h atp btp stp fp atg btg stg fgU U U U U U U U U U         	 (28)	

 

Where,	 ܷ௠	 is	the	total	deformation	energy;ܷ௛	 is	the	Hertz	contact	deformation	energy;	 ܽ,	
ܾ	 ,	 	ݏ 	 and	 ݂	 	 represent	 radial	 compression	 deformation,	 bending	 deformation,	 shear	
deformation	and	gear	matrix	deformation	respectively;	 		݌ and	 ݃		 represent	pinion	and	gear	
respectively.	
According	to	the	relationship	between	stiffness	and	energy,	the	meshing	stiffness	of	single	

tooth	meshing	gear	pair	can	be	expressed	as	
	

	
1

1 1 1 1 1 1 1 1 1m

h atp btp stp fp atg btg stg fg

k

k k k k k k k k k


       

	 (29)	

 

Where,	 ݇௠	 represents	the	comprehensive	meshing	stiffness	in	single	tooth	meshing.	
In	two‐tooth	meshing,	two	pairs	of	meshing	teeth	bear	loads	at	the	same	time,	which	can	be	

regarded	 as	 two	pairs	 of	 teeth	 in	 series.	 The	 comprehensive	meshing	 stiffness	 in	 two‐tooth	
meshing	can	be	expressed	as	
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

	 (30)	

 

Where,	 ݇ௗ		 represents	 the	 comprehensive	meshing	 stiffness	 in	 two‐tooth	meshing;݅ ൌ 1,2	 	
represent	the	first	pair	and	the	second	pair	respectively.	

3. MESH	STIFFNESS	MODEL	OF	A	CRACKED	TOOTH	

By	studying	the	distribution	of	the	maximum	principal	stress	near	the	tooth	root,	Kramberger	
et	al.	found	that	when	the	Angle	between	the	tangent	line	of	the	tooth	root	curve	and	the	tooth	
centerline	was	30°~34°,	the	tensile	stress	at	the	tangent	point	was	the	maximum.	
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Figure	2.	Model	of	a	cracked	tooth	

 

As	showen	on	Figure	2.	Point	 	ܨ is	the	starting	point	of	the	crack;	Point	 	ܧ is	the	termination	
point	of	the	crack,	which	can	be	expressed	as	Eq.(31);	 ݈஼	 represents	the	length	of	the	crack;	 	ߠ
represents	the	angle	between	the	crack	and	the	centerline	of	the	gear	tooth;	
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3.1. The	gear	body	stiffness	

According	to	the	position	of	the	crack	tip	point,	it	can	be	divided	into	the	following	two	cases:	
Case1	 	 When	 ாݔ ൏ 	஼ݔ
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Case2	 	 When	 ாݔ ൐ 	஼ݔ
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3.2. The	stiffness	of	root	transition	curve	part	

According	to	the	position	of	the	crack	tip	point,	it	can	be	divided	into	the	following	four	cases:	
Case1	 	 When	 ாݔ ൏ 	஼ݔ and	 ாݕ ൏ 	஻ݕ
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Case2	 	 When	 ாݔ ൏ 	஼ݔ and	 ாݕ ൐ 	஻ݕ
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Case3	 	 When	 ாݔ ൐ 	஼ݔ and	 ாݕ ൏ 	஻ݕ
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Case4	 	 When	 ாݔ ൐ 	஼ݔ and	 ாݕ ൐ 	஻ݕ
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3.3. The	stiffness	of	involute	part	

According	to	the	position	of	the	crack	tip	point,	it	can	be	divided	into	the	following	three	cases:	
Case1	When	 ாݕ ൐ 	஻ݕ
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Case2	When	 ஺ݕ ൏ ாݕ ൏ 	஻,andݕ ாݕ ൐ 	௉ݕ
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Case3	 	 When	 ாݕ ൏ 	஺ݕ or	(ݕ஺ ൏ ாݕ ൏ 	஻ݕ 	 and	 ாݕ ൏ 	(௉ݕ
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In	Eqs.(38)‐(58).	 	௜௫௝ܣ is	the	cross‐sectional	area	at	any	section,	which	can	be	expressed	as	
Eq.(59);	 	௜௫௝ܫ is	the	moment	of	inertia	at	any	section,	which	can	be	expressed	as	Eq.(60).	
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4. STIFFNESS	CALCULATION	AND	VERIFICATION	

At	present,	the	loaded	tooth	contact	analysis	method,	analytical	method,	FEM	and	analytical‐
finite	element	method	are	the	main	calculation	methods	of	the	gear	mesh	stiffness,	in	which	the	
calculation	results	of	FEM	are	relatively	accurate	and	widely	used.	Since	other	scholars	have	not	
studied	the	extension	of	tooth	root	crack	to	gear	body,	the	feasibility	of	the	proposed	model	is	
verified	by	FEM.	The	main	parameters	of	spur	gear	pair	are	shown	in	Table	1,	and	the	crack	
propagation	angle,	crack	depth	and	percentage	crack	depth	are	presented	in	Table	2.	
	

Table	1. Parameters	of	the	gear	dynamic	model 
Parameter	 Pinion	 Gear	

Teeth	number	 23	 31	
Module	(࢓࢓)	 2.5	 2.5	

Teeth	width	(࢓࢓)	 25	 25	
Pressure	angle	(°)	 20	 20	
Poisson’s	ratio	 0.3	 0.3	

Young	modulus	E	(ࡺ ⁄૛࢓ ) 2.07ൈ ૚૙૚૚	 2.07ൈ ૚૙૚૚	

	

Table	2.	Crack	parameters	
Crack	case	 Crack	propagation	angle	ߛ(°)	 Crack	depth	 ݈௖(mm)	

#1	 30	 1.0	
#2	 30	 1.8	
#3	 30	 2.6	

	
In	order	to	verify	the	analytical	model	developed	in	this	study,	the	mesh	stiffness	calculated	

by	 the	 finite	 element	 method	 (FEM)	 is	 used	 for	 comparison.	 Figure	 5	 displays	 the	 two‐
dimensional	 finite	 element	 model	 of	 a	 cracked	 pinion.	 In	 order	 to	 improve	 the	 calculation	
accuracy,	 the	 mesh	 around	 the	 contact	 region	 and	 the	 crack	 are	 refined.	 The	 radial	
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displacements	of	the	inner	ring	nodes	of	the	gear	are	constrained.	According	to	the	meshing	
process	of	the	gear,	the	load	is	successively	applied	to	the	nodes	on	the	involute	from	the	tooth	
root	to	the	tooth	top,	and	the	displacement	of	the	meshing	point	is	obtained.	The	stiffness	of	the	
gear	at	the	meshing	point	is	obtained	according	to	 ݇ ൌ ܨ ⁄ݔ .	
	

	
Figure	3.	Two‐dimensional	FE	model	of	the	pinion	with	a	crack	

 

In	the	process	of	gear	transmission,	because	the	pinion	bear	higher	speed	and	torque,	so	the	
crack	often	appears	in	the	pinion.According	to	the	data	in	Table	1	and	Table	2,	the	proposed	
method	is	compared	with	FEM,	and	the	results	are	shown	in	Figure	4‐Figure	6.	

	
Figure	4.	Comparison	between	the	improved	method	and	FEM	with	crack	case	#1	

 



World	Scientific	Research	Journal	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Volume	8	Issue	12,	2022	

ISSN:	2472‐3703	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 DOI:	10.6911/WSRJ.202212_8(12).0020	

186	

	
Figure	5. Comparison	between	the	improved	method	and	FEM	with	crack	case	#2	

 

	
Figure	6. Comparison	between	the	improved	method	and	FEM	with	crack	case	#3	

 

As	can	be	seen	from	Figure	4‐Figure	6,	the	method	proposed	in	this	paper	is	very	close	to	the	
FEM	result,	which	also	proves	the	feasibility	of	the	method	proposed	in	this	paper.In	order	to	
more	clearly	see	the	influence	of	different	crack	depths	on	gear	meshing	stiffness,	this	paper	
presents	Figure	7‐Figure	8	according	to	the	relationship	of	gear	transmission.	
	

	
Figure	7.	Comparison	of	single	tooth	meshing	stiffness	with	different	crack	depths	
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Figure	8.	Comparison	of	comprehensive	meshing	stiffness	at	different	crack	depths	

 

As	can	be	seen	from	Figure	7‐Figure	8,	with	the	increase	of	crack	depth,	both	single	tooth	
meshing	stiffness	and	double	tooth	meshing	stiffness	decreased	to	different	degrees,	and	the	
mutation	was	more	drastic	in	the	area	where	single	and	double	teeth	alternated.	

5. CONCLUSION	

In	this	paper,	an	analytical	model	of	mesh	stiffness	of	spur	gears	with	crack	extends	into	the	
gear	body	is	presented.	By	comparing	with	FEM,	the	accuracy	of	the	developed	analysis	method	
is	verified,	and	the	effect	of	crack	length	is	analyzed.	The	proposed	analytical	model	can	provide	
relatively	accurate	mesh	stiffness	for	spur	gear	with	cracks	by	considering	the	deformation	of	
the	gear	body.	The	presence	of	cracks	makes	the	mesh	stiffness	of	crack	teeth	decrease	during	
the	complete	rotation.	The	mesh	stiffness	of	crack	teeth	decreases	with	the	increase	of	crack	
length.	
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