
World	Scientific	Research	Journal	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Volume	8	Issue	12,	2022	

ISSN:	2472‐3703	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 DOI:	10.6911/WSRJ.202212_8(12).0024	

205	

Software	Development	of	Airworthiness	Oriented	Piston	
Aeroengine	Control	System	

Honglei	Lu,	Lihua	Zhu,	Xiaoming	Shan,	Chun	Zhang,	Zhicheng	Qi	

AECC	Aeroengine	Control	System	Institute,	Wuxi,	China	

Abstract	

As	an	important	part	of	the	general	aviation	field,	the	research	and	development	process	
of	piston	 aeroengine	 control	 software	needs	 to	meet	not	only	 the	normal	 functional	
requirements,	but	also	the	airworthiness	requirements.	Firstly,	this	paper	expounds	the	
background	of	piston	aeroengine	development.	And	explains	the	basic	requirements	of	
airworthiness.	 On	 this	 basis,	 referring	 to	 DO‐178C	 airworthiness	 standard,	 a	 safety	
critical	 software	 development	 method	 meeting	 the	 objectives	 of	 airworthiness	
development	process	 is	proposed.	According	 to	 the	process	activities	required	 in	 the	
airworthiness	 standard,	 carry	 out	 the	 processes	 related	 to	 software	 high	 level	
requirements	(HLR),	architecture	design,	low	level	requirements	(LLR),	source	code	and	
software	integration	in	the	process	of	piston	aeroengine	software	development.	

Keywords	

Safety	critical	software;	Airworthiness;	Piston	engine.	

1. INTRODUCTION	

1.1. Status	of	The	General	Aviation	Industry	

The	general	aviation	 industry	has	a	wide	range	of	applications,	 including	all	 civil	 aviation	
activities	 except	 scheduled	passenger	 and	 cargo	 flights	 [1].	 There	 is	 still	 a	 big	 gap	between	
China’s	general	aviation	industry	and	the	international	level.	However,	after	the	Civil	Aviation	
Administration	 of	 China	 (CAAC)	 issued	 the	 "Administrative	 Measures	 for	 General	 Airport	
Classification"	 in	 2017,	 the	 construction	 of	 general	 airports	 is	 gradually	 taking	 off,	 and	 the	
general	aviation	industry	has	gradually	attracted	market	attention.	
With	 the	 large	 application	 and	 scope	 of	 general	 aviation	 aircraft,	 there	 are	 a	 variety	 of	

corresponding	power	devices.	From	the	perspective	of	engine	mechanical	system,	the	general	
aviation	 aircraft	 can	 cover	 turbofan,	 turboprop,	 turbojet,	 turboshaft,	 piston	 engine,	 among	
which	piston	engine	accounts	for	45%	[1].	Therefore,	it	is	of	great	significance	for	the	research	
and	development	of	piston	aeroengine.	From	the	perspective	of	piston	engine,	its	production	
and	manufacturing	technology	has	been	relatively	mature	due	to	its	extensive	application	in	the	
automotive	industry.	However,	its	additional	considerations	for	air	conditions	and	changes	in	
fuel	quality	still	require	multiple	technologies	(lightweight,	reliability,	supercharged	matching,	
spray	combustion,	etc.)	[2];	on	the	other	hand,	the	research	and	development	of	aeroengine	is	
highly	related	to	safety.	Whether	it	has	security	qualification	requires	the	certification	of	the	
local	Civil	Aviation	Administration.	

1.2. Aeroengine	Software	Airworthiness	

For	the	research	and	development	of	safety‐critical	systems,	in	addition	to	focusing	on	the	
requirements	and	functions,	it	is	also	necessary	to	consider	the	problems	arising	in	the	research	
and	development	process,	to	ensure	that	the	process	is	controllable.	Especially	for	its	software	



World	Scientific	Research	Journal	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Volume	8	Issue	12,	2022	

ISSN:	2472‐3703	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 DOI:	10.6911/WSRJ.202212_8(12).0024	

206	

R&D,	problems	such	as	inconsistency	of	multi‐level	requirements,	ambiguity	of	requirements,	
unexpected	errors	introduced	in	the	development	process,	etc.,	need	to	be	controlled	through	
certain	 technical	 and	management	methods.	 For	 software	 development	 of	 the	 civil	 aviation	
industry,	 the	 DO‐178C	 series	 standards	 [3]	 are	 generally	 required	 and	 accepted	 by	 Federal	
Aviation	Administration	(FAA)	as	a	software	compliance	method	[4].	In	addition,	for	some	new	
R&D	technologies,	it	has	added	additional	considerations,	such	as	DO‐330	standard	[5]	for	tool	
qualification,	DO‐331	standard	[6]	for	model‐based	development	and	verification.	In	China,	the	
construction	of	airworthiness	system	is	still	in	the	development	stage,	and	there	is	still	a	big	gap	
compared	with	the	international	level.	As	airworthiness	is	a	system	construction	rather	than	a	
single	point	of	problem	 improvement,	 it	needs	 to	consider	 the	safety	aspects	 from	a	system	
perspective,	such	as	the	compliance	of	plans,	requirements	and	standards,	compatibility	with	
target	computers,	traceability	of	evidence,	accuracy	of	algorithms,	etc.	
The	 development	 of	 piston	 aero‐engine	 control	 software	 should	 not	 only	 consider	 the	

development	of	the	functional	requirements	of	the	engine	itself,	but	also	consider	its	safety	and	
airworthiness	goals	in	the	development	process.	 	

2. METHODOLOGY	(MODEL	BASED	DESIGN)	

Compared	 with	 the	 traditional	 software	 development	 methods	 [7],	 the	 model‐based	
development	method	has	 the	 characteristics	 of	 rapid	 requirements	 capture,	 automatic	 code	
generation,	 and	 high	 R&D	 efficiency.	 It	 has	 gradually	 become	 the	 preferred	 method	 in	
embedded	application	software	development	and	its	compliance	with	airworthiness	objectives	
can	also	be	satisfied	[8].	As	shown	in	Figure‐1,	the	application	layer	software	in	this	article	uses	
a	model‐based	method	for	development.	
For	 software	 development	 phase,	 based	 on	 model	 development	 and	 verification,	 the	

relationship	between	requirements	and	models	can	be	established	through	the	lifecycle	data	
management	platform.	Furthermore,	models	can	directly	generate	the	corresponding	source	
code	through	the	code	generator.	In	addition,	the	code	generator	needs	to	pass	DO‐330	standard	
for	tool	qualification,	which	can	ensure	the	consistency	of	source	code	and	model.	 	
	

Design

LLR & 
Architecture

Source Code

Code Generation
（Qualification）

Lifecycle Data Management

Test Case

Qualified Test 
Environemnt

Requirements-
Based Coverage 
And Structural 

Coverage 
AnalysisMode Simulation

Analyses
WCET Analysis

Stack Analysis

S
 o

 f
 t 

w
 a

 r
 e

D
 e

 v
 o

 l 
o 

p 
m

 e
 n

 t

S
 o

 f
 t 

w
 a

 r
 e

V
 e

 r
 i 

f 
i c

 a
 t 

i o
 n

	
Figure	1.	Application	layer	software	development	based	on	MBD	

	 	
For	software	verification	stage,	both	model	coverage	and	code	coverage	can	be	collected	by	

means	 of	 test	 and	 model	 simulation	 to	 validate	 requirements	 coverage	 and	 redundancy	



World	Scientific	Research	Journal	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Volume	8	Issue	12,	2022	

ISSN:	2472‐3703	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 DOI:	10.6911/WSRJ.202212_8(12).0024	

207	

structure	validation;	Worst‐Case	Execution	Time	(WCET)	and	stack	analysis	can	also	be	used	to	
verify	code	performance	requirements	and	compatibility	with	the	target	computer	[9].	

3. AIRWORTHINESS	OBJECTIVES	

Before	 software	 development,	 the	 compliance	 of	 system	 functions	 is	 generally	 managed	
through	the	ARP4754A	standard	[10]	to	manage	the	system	requirements	process,	of	which	the	
safety	 requirements	 are	 guaranteed	 by	 ARP4761	 standard	 [11].	 As	 shown	 in	 Figure‐2,	 the	
software	shall	meet	the	system	requirements	and	decompose	the	system	requirements	from	
the	perspective	of	software.	Considering	the	particularity	of	airborne	safety	critical	software	
development	and	reducing	the	major	failure	due	to	non‐expected	errors,	a	series	of	activities	
are	 specified	 for	 the	 development	 of	 airworthiness	 software.	 It	 involves	 software	 planning	
process,	development	process	(including	requirements	process,	design	process,	coding	process,	
integration	process),	verification	of	outputs	of	requirements	process,	verification	of	outputs	of	
design	process,	verification	of	outputs	of	coding	process,	verification	of	outputs	of	integration	
process,	verification	of	verification	process	results,	configuration	management	process	,	quality	
assurance	process,	etc.	
The	objectives	of	the	planning	process,	it	is	necessary	to	define	various	plans	and	standards	

of	the	software	life	cycle;	The	software	development	process	needs	to	define	various	activities	
in	 the	 process	 from	 requirements	 to	 source	 code	 and	 object	 code;	 The	 verification	 of	 the	
requirements	process	is	mainly	to	verify	the	correctness	and	verifiability	of	the	output	of	the	
requirements	process.	Verification	of	usability	and	other	aspects;	similarly,	verification	of	the	
integrity	 and	 correctness	 of	 design,	 coding,	 and	 integration	 process;	 The	 verification	 of	
verification	process	results	is	mainly	to	ensure	the	correctness	of	verification	and	the	coverage	
of	requirements	and	structures,	so	as	to	prove	that	all	requirements	have	been	realized,	and	
there	 is	 no	 extra	 code	 and	 function	 redundancy;	 the	 configuration	management	 process	 is	
mainly	to	ensure	the	orderliness	of	project	development,	change	management,	software	release	
and	problem	handling	mechanism,	etc.;	the	quality	assurance	process	is	mainly	to	ensure	that	
the	implementation	of	the	project	meets	the	predefined	activities.	So,	the	objective	of	the	entire	
DO‐178C	 is	 mainly	 to	 ensure	 that	 the	 functions	 required	 by	 the	 system	 are	 correctly	
implemented	in	the	software	development	process,	and	no	additional	errors	are	introduced.	 	
	

System 
Requirements 

Process

Software 
Requirements 

Process 

Software 
Design Process

Software 
Coding Process

Software 
Integration Process

Problem & 
Feedback

Allocate to 
Software

HLR

LLR & 
Architecture

Source Code

Object Code

Problem & 
Feedback

Problem & 
Feedback

Problem & 
Feedback

	
Figure	2.	Information	flow	in	software	development	process	

 

In	addition,	for	the	verification	process,	it	can	be	divided	into	three	ways:	review,	analysis,	
and	testing.	The	review	can	be	carried	out	in	the	form	of	peer	expert	inspection,	in	the	form	of	
a	checklist,	etc.;	the	analysis	can	be	carried	out	in	a	deterministic	and	repeatable	way	with	the	



World	Scientific	Research	Journal	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Volume	8	Issue	12,	2022	

ISSN:	2472‐3703	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 DOI:	10.6911/WSRJ.202212_8(12).0024	

208	

help	of	special	tools	on	the	function,	performance	and	other	aspects	of	software	components;	
testing	can	be	carried	out	by	establishing	test	requirements,	 test	cases,	 test	procedures,	and	
confirming	the	test	results	after	implementation.	
Based	on	the	software	development	of	piston	aeroengine	as	an	example,	this	paper	mainly	

introduces	the	airworthiness	goals	that	need	to	be	met	in	the	process	of	software	development.	
As	shown	in	Table‐1,	there	are	7	objectives	that	need	to	be	met	during	the	development	process,	
which	involves	different	development	stages.	
	

Table	1.	Software	Development	Process	Airworthiness	Objectives	(DO‐178C	[3])	
Index	 Objective	Description	 Software	Process	
A2.1	 High‐level	requirements	are	developed	 Requirements	Porcess	

A2.2	
Derived	high‐level	requirements	are	defined	and	
provided	to	the	system	processes,	including	the	

system	safety	assessment	process.	
Requirements	Porcess	

A2.3	 Software	architecture	is	developed.	 Design	Process	
A2.4	 Low‐level	requiremnts	are	developed.	 Design	Process	

A2.5	
Derived	low‐level	requirements	are	defined	and	
provided	to	the	system	processes,	including	the	

system	safety	assessment	process.	
Design	Process	

A2.6	 Source	Code	is	developed.	 Coding	Process	

A2.7	
Executable	Object	Code	and	Parameter	Data	Item	
Files,	if	any,	are	produced	and	loaded	in	the	target	

computer.	
Integration	Process	

4. DEVELOPMENT	PROCESS	

4.1. Requirement	Process	

The	requirements	process	mainly	involves	the	two	objectives	of	A2.1	and	A2.2	in	Table‐1.	The	
basic	 activities	 include:	 on	 the	 one	 hand,	 the	 system	 requirements	 (including	 functional	
requirements,	interface	requirements,	safety	requirements,	etc.)	allocated	to	the	software	level	
need	to	be	decomposed	to	ensure	that	each	system	requirement	allocated	to	the	software	has	
corresponding	 high‐level	 software	 requirements;	 on	 the	 other	 hand,	 the	 requirements	
themselves	should	meet	the	defined	requirement	standards,	and	should	not	describe	the	details	
of	design	and	verification;	finally,	for	the	requirements	derived	from	high‐level	requirements,	
incorrect	or	 ambiguous	 contents	 in	 system	requirements,	 should	be	 feedback	 to	 the	 system	
process	to	ensure	the	normal	development	of	functions	and	the	evaluation	of	safety.	
Requirements	can	be	edited	in	the	requirement	platform,	mainly	including	the	maintenance	

and	management	of	requirements	at	all	levels.	For	high‐level	software	requirements,	it	is	mainly	
about	the	decomposition	of	system	requirements	and	the	description	of	what	to	do	from	the	
software	perspective.	High‐level	requirements	for	piston	aeroengine	control	software,	mainly	
including	 signal	 processing,	 engine	 state	 management,	 fuel	 injection	 management,	 fault	
handling,	etc.	Furthermore,	the	control	of	a	piston	aeroengine	is	different	from	that	of	vehicle	
piston	engine.	In	addition	to	normal	functions,	it	is	necessary	to	consider	the	requirements	of	
system	fault	tolerance.	

4.2. Design	Process	

The	design	process	mainly	involves	A2.3,	A2.4	and	A2.5	in	Table	1.	Its	basic	activities	include:	
on	 the	 one	 hand,	 the	 architecture	 and	 low‐level	 requirements	 should	 meet	 high‐level	
requirements	 and	 conform	 to	 the	 defined	 design	 standards;	 On	 the	 other	 hand,	 it	 is	 also	



World	Scientific	Research	Journal	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Volume	8	Issue	12,	2022	

ISSN:	2472‐3703	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 DOI:	10.6911/WSRJ.202212_8(12).0024	

209	

necessary	to	consider	the	handing	of	failure	modes,	the	consistency	of	data	flow	and	control	
flow	of	each	software	component,	and	its	 impact	on	safety;	 finally,	the	derived	requirements	
involved	in	the	design	process	and	problems	found	in	the	design	process	should	be	feedback	to	
the	upper‐level	process	for	clarification	or	correction.	
After	 completing	 the	 high‐level	 requirements,	 the	 software	 architecture	 can	 be	 built	

according	to	the	high‐level	requirements	during	the	design	process.	The	piston	engine	control	
software	is	processed	as	follows:	First,	the	hardware	driver	module	obtains	real‐time	data	from	
the	 hardware	 and	 communication.	 And	 transfers	 the	 original	 data	 to	 the	 application	 layer	
software.	Secondly,	the	application	layer	software	processes	the	original	data	(including	signal	
calibration,	 signal	 filtering,	 fault	 diagnosis,	 etc.	 Further,	 after	 the	 signal	 is	 pretreated,	 the	
application	layer	software	transfers	valid	data	to	the	engine	status	management	module,	and	
manages	the	demand	torque	according	to	the	engine	status	and	external	conditions.	
	

	
Figure	3.	Application	layer	software	development	

	
As	shown	in	Figure‐3	after	the	above	software	architecture	design	is	completed,	the	software	

can	be	 further	detailed	designed	 to	meet	 the	 functional	 requirements	 required	 in	high‐level	
requirements.	

4.3. Coding	and	Integration	Process	

The	software	coding	process	focuses	on	the	A2.6	objective	in	Table‐1.	Since	the	application	
layer	is	model‐based,	the	source	code	can	be	automatically	generated	in	the	model‐based	design	
environment,	 and	 the	 code	 generator	 that	 has	 been	 qualified,	 ensures	 that	 the	 source	 code	
implements	the	low‐level	requirements	and	conforms	to	the	software	architecture	and	coding	
standards.	For	other	handwritten	code,	the	low‐level	software	requirements	can	be	established	
through	the	requirements	management	platform.	Furthermore,	source	code	can	be	developed	
according	 to	 the	 low‐level	 requirements,	 and	 corresponding	 verification	 activities	 can	 be	
carried	out.	
The	integration	process	focuses	on	the	A2.7	objective	in	Table‐1.	Its	main	activities	include:	

on	the	one	hand,	compile	and	link	the	source	code	to	generate	executable	object	code;	On	the	
other	hand,	software	 integration	is	done	in	a	certain	form	to	ensure	functional	 integrity	and	
interface	correctness.	Software	and	hardware	integration	is	performed	in	the	target	computer	
environment	to	verify	compatibility	and	performance	impact	with	the	target	computer.	On	this	
basis,	inadequate	and	incorrect	inputs	need	to	be	feedback	to	the	upper	process	for	clarification	
and	 correction;	 finally,	 changes	 to	 requirements,	 architecture,	 or	 source	 code	 during	
development	should	be	strictly	 restricted	and	managed	 in	 formal	airworthiness	products	 to	
ensure	traceability,	rationality,	and	compliance	with	objectives.	



World	Scientific	Research	Journal	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Volume	8	Issue	12,	2022	

ISSN:	2472‐3703	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 DOI:	10.6911/WSRJ.202212_8(12).0024	

210	

Model	checkers	can	be	used	for	model	integration.	It	checks	for	errors	in	software	models	
and	 architecture	 through	 a	 set	 of	 built‐in	 rules,	 including	 incorrect	 or	 redundant	 variable	
definitions,	type	consistency,	consistency	of	timing,	consistency	of	control	flow	and	consistency	
of	data	initialization.	The	result	after	passing	the	checker	is	shown	in	Figure‐4.	
	

	
Figure	4.	Model	checker‐based	rule	checking	

	
Model	 generation	 code	 is	 integrated	 with	 handwritten	 code	 through	 the	 compiler	 and	

associated	configuration	files.	Address	space	of	code	and	warning	during	compilation	are	also	
analyzed.	 The	 compiled	 executable	 object	 code	 is	 then	 loaded	 into	 the	 target	 computer	 for	
testing	to	ensure	its	correctness.	

4.4. Traceability	of	the	development	process	

Although	the	data	traceability	objective	is	not	specified	during	the	development	process,	the	
corresponding	activities	have	clear	required	in	the	DO‐178C	standard.	It	is	convenient	to	assess	
whether	 the	 requirements	 have	 been	 fully	 implemented,	 and	 the	 visibility	 of	 derived	
requirements	and	redundant	functions.	On	the	other	hand,	it	is	also	easy	to	track	changes	in	
requirements	by	establishing	traceability	between	requirements	and	models	at	each	level.	 	
Traceability	between	configuration	items	can	be	established	and	visualized	through	the	life	

cycle	 management	 platform.	 For	 the	 traceability	 between	 requirements,	 the	 traceability	
between	system	requirements	and	software	high‐level	requirements,	between	software	high‐
level	requirements	and	some	software	low‐level	requirements	can	be	carried	out.	On	the	other	
hand,	the	traceability	between	models	and	high‐level	requirements	can	also	be	established.	The	
traceability	between	handwritten	code	and	low‐level	software	requirements	can	be	carried	out	
through	code	comments.	

5. CONCLUSION	

This	 paper	 expounds	 the	 software	 development	 based	 on	 piston	 aeroengine	 from	 the	
airworthiness	 point	 of	 view.	 Based	 on	 the	DO‐178C	 standard,	 carry	 out	 software	 high‐level	
requirements,	 architecture,	 models,	 low‐level	 requirements,	 source	 code	 and	 integration	
process	to	achieve	the	purpose	of	meeting	the	airworthiness	objectives	(mainly	7	development	
process	objectives).	 	

REFERENCES	

[1] Dong	Yanfei,	Huang	Ming	and	Li	Ruiqi,	“Review	of	general	aviation	engine	development”,	Journal	of	
Xi'an	Institute	of	Aeronautics,	2017,	Vol.	35	(5),	p8‐13.	

[2] Pan	Zhongjian,	He	Qinghua	and	Yang	Jing,	“Development	status	of	piston	aviation	heavy	oil	engine	
s”,	Science	and	Technology	Guide,	2013,	Vol.	31	(34),	p65‐68.	



World	Scientific	Research	Journal	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Volume	8	Issue	12,	2022	

ISSN:	2472‐3703	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 DOI:	10.6911/WSRJ.202212_8(12).0024	

211	

[3] DO‐178C,	“Software	Considerations	in	Airborne	Systems	and	Equipment	Certification”,	Washington	
DC:	RTCA	Inc,	December	2011.	

[4] DO‐330,	“Software	Tool	Qualification	Considerations”,	Washington,	DC:	RTCA,	Inc.,	December	2011.	

[5] DO‐20‐115D,	“Airborne	Software	Development	Assurance	Using	EUROCAE	ED‐12()	and	RTCA	DO‐
178()”,	FAA,	USA,	2017.	

[6] DO‐331,	 “Model‐Based	 Development	 and	 Verification	 Supplement	 to	 DO‐178C	 and	 DO‐278A”,	
Washington,	DC:	RTCA,	Inc.,	December	2011.	

[7] Yang	 Lisha,	 Wang	 Hui.	 “Model‐based	 design	 of	 embedded	 software”,	 Application	 Research	 of	
Computers,	2004,	21(12):76‐78.	

[8] Jean‐Louis	Camus,	Bernard	Dion.	“Efficient	development	of	airborne	software	with	SCADE	suite”,	
Esterel	Technologies,	2011.	

[9] Leanna	Rierson.	 “Developing	safety‐critical	software:	a	practical	guide	 for	aviation	software	and	
DO‐178C	compliance”.	CRC	Press,	2017.	

[10] ARP4754A,	 “Guidelines	 for	 Development	 of	 Civil	 Aircraft	 and	 Systems”,	 Warrendale,	 PA:	 SAE	
Aerospace,	December	2010.	

[11] ARP4761,	“Guidelines	and	Methods	for	Conducting	the	Safety	Assessment	Process	on	Civil	Airborne	
Systems	and	Equipment”,	Warrendale,	PA:	SAE	Aerospace,	December	1996.	


