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Abstract	
Maritime	small	ship	detection	 is	a	challenge	problem	 in	computer	vision.	At	present,	
YOLOv3	 network	 is	widely	 used	 for	 object	 detection,	 but	 it	 gets	 low	 recall	 rate	 and	
detection	accuracy	for	small	objects	in	the	complex	ocean	environment.	Addressing	this	
problem,	we	 improve	 the	 backbone	 and	 predicted	 network	 of	 YOLOv3	 network	 for	
detecting	maritime	small	ship.	Firstly,	we	build	a	maritime	small	ship	dataset	including	
four	kinds	of	scenes:	small	traffic	flow	and	heavy	traffic	flow	in	sunny	and	foggy	weather.	
Secondly,	 we	 use	 K‐means	 to	 re‐cluster	 the	 anchor	 box	 for	matching	 the	 shape	 of	
maritime	 ship.	 Thirdly,	 we	 introduce	 spatial	 pyramid	 pooling	 (SPP)	 module	 and	
frequency	 channel	 attention	 (FCA)	 module,	 and	 redesign	 the	 structure	 of	 YOLOv3	
network,	called	 it	as	SPP‐FCA‐YOLOv3.	Here	SPP	module	 is	used	to	 fuse	 local	 features	
with	global	 features	and	enriches	 the	expression	 capability	of	 the	 feature	maps.	FCA	
module	 emphasizes	 important	 object	 feature	 and	 suppresses	 unnecessary	 noise.	
Experimental	 results	 show	 that	 proposed	 SPP‐FCA‐YOLOv3	 has	 higher	 detection	
accuracy	 for	maritime	 small	 ship	 detection,	 getting	 a	 2.2%	 improvement	 in	 average	
precision	compared	with	YOLOv3,	and	a	1.2%	improvement	in	average	precision	as	well	
as	higher	speed	compared	with	YOLOv5.	
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1. INTRODUCTION	

In recent years, maritime small ship detection has become a hot topic, and it is important to 
find suspicious ships at a long distance and early warning. Due to the complex and changeable 
marine environment, the traditional object detection methods easily cause false and missed 
detection, and cannot meet the requirements for safe navigation of the ship. Therefore, this 
paper focuses on the deep learning-based object detection method to solve these problems. 

With the rapid development of deep learning (He et al., 2016; Huang et al., 2017), it has 
become a new direction to tackle the problem of ship detection (Lin et al., 2017; Liu et al., 2018). 
The existing deep learning-based object detection methods can be grouped into two categories 
according to whether to generate regional proposals or not: one-stage and two-stage detection 
methods. Two-stage detection methods have an advantage in detection accuracy but relatively 
time-consuming, such as R-CNN (Girshick et al., 2014), Fast R-CNN (Girshick, 2015), Faster R-
CNN (Ren et al., 2015), while one-stage detection methods keep a balance between the 
detection accuracy and speed, such as SSD (Liu et al., 2016), YOLO series (Redmon et al., 2016; 
Redmon et al., 2017; Redmon et al., 2018), and RetinaNet (Lin et al., 2017).  



World	Scientific	Research	Journal	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Volume	8	Issue	5,	2022	

ISSN:	2472‐3703	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 DOI:	10.6911/WSRJ.202205_8(5).0038	

298 

YOLO series networks are popular in object detection, and have advantages in both accuracy 
and speed. However, in the face of complex ocean environment, the YOLO network cannot gain 
satisfying results for maritime small ship detection. Addressing this problem, we introduce the 
SPP and FCA module to propose a SPP-FCA-YOLOv3 network. 

The main contributions of our paper are as follows: 
(1) We build a maritime small ship dataset for object detection, including four kinds of scenes: 

small traffic flow in sunny weather, heavy traffic flow in sunny weather, small traffic flow in 
foggy weather and heavy traffic flow in foggy weather. 

(2) We introduce the SPP and FCA module to improve the backbone and predicted network 
of the YOLOv3 network to gain SPP-FCA-YOLOv3. The SPP module fuses local features with 
global features to enrich the expression capability of the feature maps. The FCA module 
emphasize the difference between the ships and backgrounds to highlight the semantic 
information of ships. 

(3) Our experimental results show that the proposed SPP-FCA-YOLOv3 achieves high 
accuracy and speed for maritime small-sized ship detection.  

The remainder of this paper is organized as follows. The related work about YOLOv3 is 
described in Section 2, the framework and details of our proposed method are introduced in 
Section 3. The dataset implementation details and the evaluation protocol are shown in Section 
4. The experimental results and analysis are discussed in Section 5. Finally, Section 6 concludes 
this paper. 

2. RELATED	WORK	

2.1. YOLOv3	Network	

As a representative network of the YOLO series, YOLOv3 (Redmon et al., 2018) has been 
recently received extensive attention, and adopts the idea of regression. For a given input image, 
YOLOv3 network divides it into three grids with different scales of 13*13, 26*26, 52*52, and 
directly returns the target boundary and target category of each grid in the prediction stage. 
During the feature extraction stage, YOLOv3 network is further improved on the YOLOv2-based 
network. Specifically, it proposes a more powerful Darknet53 backbone network based on 
Residual Network (ResNet) (He et al., 2016), which has better performance in feature extraction. 
The loss function of it is calculated as following: 
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where 𝐿௕௢௫ , 𝐿௖௟௦ , 𝐿௢௕௝  represents the loss of predicted box position regression, object 
classification and object confidence.  𝑆ଶ  represents the grid size, 𝑥  and 𝑦  represent 
horizontal and vertical coordinates respectively, 𝑤  and ℎ  represent the width and high 
respectively. 𝑐 indicates the predicted value of confidence, and 𝑐̂ indicates the label value of 
𝑐 confidence. 

YOLOv3 network is a representative of one-stage object detection network and still has many 
defects though it is simple to implement. YOLOv3 simultaneously predicts the location 
coordinates and category information of the object, which will lead to the problem of inaccurate 
object localization. In addition, YOLOv3 network has to predict a total of more than 10,000 
possible prediction boxes at three prediction scales. Unfortunately, only a few parts of 
prediction boxes contain objects while most parts only contain background information, 
resulting in extreme imbalance in the number of objects and backgrounds. 

2.2. Attention	Mechanism	

Recently attention mechanism has been widely incorporated into deep learning model. Wang 
et al. (2017) used the Residual Attention Network to train the neural network and achieved 
excellent results in image classification. In the task of image captioning, Chen et al. (2017) 
proposed a new convolutional neural network SCA-CNN, which incorporates spatial and 
channel-wise attention. Hu et al. (2018) focused on the channel relationship and proposed a 
squeeze-and-excitation (SE) block. The SE module has significantly improved the CNN network 
at the cost of slightly increasing the computing cost. Nie et al. (2020) integrated channel 
attention and spatial attention into Mask R-CNN for ship detection and segmentation. Qin et al. 
(2020) designed a frequency channel attention network (FcaNet) to compensate the deficiency 
of feature information in existing channel attention methods.  

In this paper we consider the interference problem of maritime small ship in the complex 
ocean environment, and introduce FCA module to propose SPP-FCA-YOLOv3 network to better 
distinguish object from background. 

3. 3	PROPOSED	METHODS	
In this section, we elaborate on the architecture of the proposed SPP-FCA-YOLOv3 network 

for maritime small ship detection. At first, for faster and more accurate, we adjust the shape of 
9 anchor boxes to better match the shape of maritime ship. Then, we redesign the backbone 
network and prediction network of YOLOv3 network. 

3.1. Anchor	Box	for	Ship	Detection	

Anchor box is a few boxes of different sizes obtained by statistics or clustering from the 
ground truth in the training dataset, which can avoid blind searching during the training of the 
model and help the model to converge quickly. The original YOLOv3 network uses K-means to 
cluster all samples of the training dataset to obtain the width and height of representative 
shapes by using VOC and COCO datasets, which do not match the shape of maritime ship. So, we 
use K-means to re-cluster the anchor box to meet the requirements of ship detection. 

Step 1, randomly selecting k of all ground truth boxes as the center of the cluster, here we set 
k to 9.  

Step 2, calculating the distance between each ground truth box and each cluster. As illustrated 
in reference (Redmon et al., 2017), using Euclidean distance in k-means will make larger boxes 
and generate more error than smaller boxes, so we use distance formula as following (5): 
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Where IoU is the ratio of the intersection of the ground truth box and the bounding box to 
their union counterpart, which is expressed as (6): 

 

IoU ൌ
𝑎𝑟𝑒𝑎ሺ𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑏𝑜𝑥ሻ  ∩ 𝑎𝑟𝑒𝑎ሺ𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥ሻ
𝑎𝑟𝑒𝑎ሺ𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑏𝑜𝑥ሻ  ∪ 𝑎𝑟𝑒𝑎ሺ𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥ሻ

ሺ6ሻ 

 
Then the bounding box is divided into the closest clusters. 
Step 3, recalculating the cluster center according to the ground truth boxes in each cluster. 
Step 4, repeating step 2 and step 3 until the elements in each cluster are no longer changed. 
As shown in Figure 1, the 9 anchor boxes are gained, namely [3, 2], [5, 2], [14, 3], [9, 4], [19, 

5], [18, 8], [30, 9], [39, 12], [92, 26] which can match the shape of different maritime ships. The 
new anchor boxes, as an effective size prior, make the proposed network converge faster and 
achieve better performance. 

 

 
Figure	1.	Different anchor boxes for ship detection 

3.2. Structure	of	Proposed	SPP‐FCA‐YOLOv3	Network	

As shown in Figure 2, the proposed SPP - FCA -YOLOv3 network includes a backbone network 
and a prediction network. The backbone network is responsible for feature extraction, including 
3 CBL blocks, 5 CBS blocks, 23 RES blocks, SPP module and FCA module. The prediction network 
consists of 8 CBL blocks stacked to form a feature pyramid structure. 

We use 23 RES blocks and 5 CBS blocks alternating with each other to extract image features, 
where CBS block consists of convolution layer, batch normalization and Sigmoid activation 
function. RES block consists of 2 CBL blocks and a residual structure, while the CBL block 
consists of a convolutional layer, batch normalization and a Leaky ReLU activation function. The 
role of the CBS block is down-sampling, which enhances the learning ability of the network and 
preserves more information about small objects. After five times of down-sampling in the 
backbone network, the size of the feature map changes from 512*512*3 to 16*16*1024. 

In the penultimate layer of the backbone network, we use the SPP module to replace the 
original convolutional layer, as shown in Fig.3 (d). The SPP module consists of three max-
pooling layers, the stride is 1, and convolutional kernel sizes are 5*5, 9*9 and 13*13 in that 
order. The SPP module conveys a feature map of size 16*16*1024 to three maximum pooling 
layers, and finally fuses the output features of different scales to obtain a feature map of size 
16*16*2048. That achieves the fusion of local features with global features and enriches the 
expression capability of the feature maps.  

After the SPP module, we lead into a FCA module, which uses a two-dimensional discrete 
cosine transform (2D-DCT) to fuse multiple frequency-domain components, emphasizing the 
important target feature while suppressing unnecessary noise. In the prediction part, we adopt 
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a feature pyramid structure, in which three bounding boxes are predicted in each grid of three 
prediction channels, and finally the detection results are obtained by filtering the bounding 
boxes with non-maximum suppression.  

 

 
Figure	2.	Structure of proposed SPP-FCA-YOLOv3 network 

 

 
(a) CBL block (b) CBS block (c) RES bolck (d) SPP module 

Figure	3.	Block’s structure 

3.3. Frequency	Channel	Attention	Mechanism	 	

Channel attention modules are widely used in deep learning network, such as SENet (Hu et 
al., 2018), ECANet (Wang et al., 2020), CBAM (Woo et al., 2018), which usually use global 
average pooling (GAP) to get global information of each channel. GAP is a special case of two-
dimensional discrete cosine transform (2D-DCT), whose result is proportional to the lowest 
frequency component of 2D-DCT, and loses a lot of frequency information. Although GAP is 
simple and efficient, it cannot well capture the rich information of input pattern. To solve this 
problem, we introduce a FCA (Qin et al., 2020) module using 2D-DCT into the proposed SPP-
FCA-YOLOv3 network to extract different local information in the channel. 

The preprocessing method GAP of channel attention uses inadequate information. So, we use 
2D DCT to introduce more information to solve the problem. The FCA module (Qin et al., 2020) 
uses the 2D-DCT to replace the ordinary cosine transform. The two-dimensional discrete cosine 
transform and its inverse transform formula are as following (7) and (8): 
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where 𝑓ଶௗ ∈ 𝑅ுൈௐrepresents the frequency spectrum of DCT, 𝑥ଶௗ ∈ 𝑅ுൈௐ represents the 
input of the feature map, 𝐻 and 𝑊 are the height and width of the feature map, cos ሺగ௛

ு
ሺ𝑖 ൅

ଵ

ଶ
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ଶ
ሻሻ is the weights of discrete cosine transform weights. 

The structure of the FCA module is shown in Figure 4. The input image features are evenly 
split into N equal parts. For each feature, the frequency importance of each channel is evaluated 
by using a two-step heuristic criterion. Then, the frequency component with the best 
performance is selected as the result of the output frequency feature. After splicing N output 
𝐹଴, 𝐹ଵ … 𝐹௡ିଵ features, the channel correlation is fitted through the fully connected layers, and 
then the weight is normalized by the sigmoid function. Finally, the channel features of each 
frequency are obtained by multiplying the original image features.  

 

 
Figure	4.	Structure of frequency channel attention module 

4. EXPERIMENTS	
4.1. Dataset	

 
(a) Small traffic flow in sunny weather 

 
(b) Heavy traffic flow in sunny weather 

 
(c) Small traffic flow in foggy weather 

 
(d) Heavy traffic flow in foggy weather 
Figure	5.	Datasets for different scenes 
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Data greatly affects the performance of deep learning models. Here we construct a maritime 
small ship dataset with images from offshore acquisition, and the labels are manually labeled. 
This dataset contains four scenes: small traffic flow in sunny weather, heavy traffic flow in sunny 
weather, small traffic flow in foggy weather and heavy traffic flow in foggy weather. And several 
examples are shown in Figure 5. The resolution of the image is 1920*1080, and the label 
contains five information, including object category, normalized object coordinates X and Y, 
normalized object width W and height H respectively. The visualized analysis is shown in Figure 
6. It can be seen from Figure 6 (a) that the size of the ships varies greatly, with the smallest ship 
being about 14*9 pixels and the largest ship being about 643*197 pixels. The distribution of 
ships in all images can be seen in Figure 6 (b), which shows the diversity of ships' positions in 
the images. 

 

 
(a) Size distribution of ship (b) Location distribution of ship 

Figure	6.	Visualization distribution of ship. The coordinate values are normalized between 
0 and 1. The change in color shades represents the change in the number of ships. 

4.2. Experimental	Results	and	Analysis	

In our experiment, we randomly select 80% of dataset as training sets and the rest as test 
sets.  

First, we use CBS block to replace the convolutional layer which plays a down-sampling role 
in the YOLOv3 network, and the results are listed at Table 1. It can be seen from Table 1 that the 
recall of the original YOLOv3 network was improved by 4% and the precision was improved by 
3.9%. The AP@0.5 increases by 0.7% and AP@0.5:0.95 increases by 1.2%. The CBS block hardly 
increases the training cost, but reduces the loss of object features in the process of down-
sampling.  

Then, we replace the original convolution layer with the SPP module in the third reciprocal 
layer of the backbone network. That increases the parameters of the network and the training 
time, yet hardly affects the speed of ship detection in the test phase. Compared with only using 
CBS block, the AP@0.5 of our model is improved by 0.6%, the precision is improved by 5.6%, 
and the AP@0.5:0.95 is increased by 5.5%. 

Finally, we add the FCA module after the SPP module. Compared with using CBS block and 
SPP module, the recall of our model is increased by 0.3%, and the precision is increased by 1.2%. 
This improvement is attributed to the fusion of multiple frequency components by the FCA 
module, the highlight of important information and the suppression of noise information.  
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Table	1.	Experimental results about adding different modules 

Methods AP@0.5 AP@0.5:0.95 Precision Recall F1 

YOLOv3 0.961 0.735 0.855 0.935 0.894 
YOLOv3 

+CBS 
0.968 0.747 0.894 0.975 0.932 

YOLOv3+CBS+SPP 0.974 0.802 0.950 0.963 0.956 
SPP-FCA-YOLOv3 0.983 0.825 0.962 0.966 0.964 

	

 
Figure	7.	Performance comparison of ship detection about adding different modules 

4.3. Compared	with	YOLOv3	

Further, in order to compare the proposed SPP-FCA-YOLOv3 with the YOLOv3 network, we 
test them on four sub-datasets respectively. The results are shown in Tables 2, 3, 4 and 5. In 
Table 2, for small traffic flow in sunny weather, both the YOLOv3 network and the SPP-FCA-
YOLOv3 network perform well. In Table 3, for heavy traffic flow in sunny weather, the SPP-FCA-
YOLOv3 network shows a 1.7% improvement in recall. In Table 4, for small traffic flow in foggy 
weather, the SPP-FCA-YOLOv3 network showed a 2.0% improvement in precision, and a 1.1% 
improvement in F1. In Table 5, for heavy traffic flow in foggy weather, the recall of SPP-FCA-
YOLOv3 network is improved by 0.6% and precision is increased by 0.2%, while overall AP@0.5 
is still improved by 0.8%. 

 In summary, the SPP-FCA-YOLOv3 network shows better than YOLOv3 under the 
interference of foggy environment, which also suggests that our model is more robust in 
complex scenes.  

 
Table	2. Detection results for small traffic flow in sunny weather 

Methods AP@0.5 AP@0.5:0.95 Precision Recall F1 

      
YOLOv3 0.981 0.811 0.977 0.980 0.978 

SPP-FCA-
YOLOv3 0.985 0.834 0.984 0.981 0.982 
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Table	3.	Detection results for heavy traffic flow in sunny weather 

Methods AP@0.5 AP@0.5:0.95 Precision Recall F1 

YOLOv3 0.937 0.718 0.852 0.906 0.878 
SPP-FCA-

YOLOv3 
0.945 0.751 0.898 0.923 0.910 

 
Table	4.	Detection results for small traffic flow in foggy weather 

Methods AP@0.5 AP@0.5:0.95 Precision Recall F1 

YOLOv3 0.950 0.733 0.916 0.908 0.912 
SPP-FCA-

YOLOv3 0.963 0.741 0.936 0.911 0.923 

 
Table	5.	Detection results for heavy traffic flow in foggy weather 

Methods AP@0.5 AP@0.5:0.95 Precision Recall F1 

YOLOv3 0.908 0.706 0.842 0.898 0.869 
SPP-FCA-YOLOv3 0.916 0.724 0.844 0.904 0.873 

4.4. Compared	with	Other	Networks	

In this section, we compare the SPP-FCA-YOLOv3 with some common object detection 
methods. The results are shown in Figure 8 and Table 6. As can be seen, the proposed SPP-FCA-
YOLOv3 is higher than all other methods in terms of AP and recall, and slightly lower than the 
YOLOv5 network in detection precision, but faster than it. Compared with the YOLOv3 network, 
the SPP-FCA-YOLOv3 network decreases slightly in detection speed, but owns higher precision 
and recall. Meanwhile, over 2% improvement in the AP@0.5 metric and nearly 9% 
improvement in AP@0.5:0.95, as well as a 7% improvement in F1 are shown in Table 6.  

 

 
Figure	8.	Performance comparison of ship detection in different methods 
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TABLE	6.	Comparison of different methods 

Methods AP@0.5 AP@0.5:0.95 Precision Recall F1 FPS 

SSD300 0.826 0.598 0.762 0.816 0.788 59 
SSD512 0.872 0.642 0.805 0.946 0.867 28 

Fast-RCNN 0.819 0.587 0.758 0.789 0.773 0.6 
Faster-RCNN 0.846 0.631 0.794 0.812 0.803 8 

YOLOv3 0.961 0.735 0.855 0.935 0.894 66 
YOLOv5 0.972 0.755 0.964 0.946 0.955 53 

SPP-FCA-
YOLOv3 

0.983 0.825 0.962 0.966 0.964 62 

 

 
Figure	9.	P-R curves of different methods 

 
Figure 9 shows the P-R curves of the YOLOv3 network, the YOLOv5 network and the SPP-FCA-

YOLOv3 network. It can be seen that the range of P-R curve corresponding to the SPP-FCA-
YOLOv3 network is the largest, which means it has the highest AP value. Figure 10 gives the 
detection results of YOLOv3, YOLOv5 and SPP-FCA-YOLOv3 on different scenes. As shown in 
Figure 10 (a), on the heavy traffic flow in sunny weather, both the YOLOv3 network and the 
YOLOv5 network incorrectly detect the dragonfly in the image as a ship, while the proposed 
FCA-SPP-YOLO network avoids the false detection and moreover has a higher confidence score. 
As shown in Figure 10 (b), on the heavy traffic flow in foggy weather, two ships in the YOLOv3 
network generate duplicate detections, and one ship in the YOLOv5 network generates 
duplicate detections. However, the FCA-SPP-YOLO network introduces the FCA module to 
depress the negative impact of foggy weather and does not generate duplicate detections. 
Figure 10 further demonstrates the superiority of the proposed SPP-FCA-YOLOv3 network. 
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(a)Detection results of heavy traffic flow in sunny weather 

 
(b)Detection results of heavy traffic flow in foggy weather 

Figure	10.	The comparison results of different methods are as follows YOLOv3, YOLOv5, 
SPP-FCA-YOLOv3. 

5. CONCLUSIONS	

In this paper, we propose a novel network SPP-FCA-YOLOv3 for maritime small ship detection 
in the complex ocean environment. Firstly, the K-means method is used to re-cluster the anchor 
box to match the shape of the ship. Then, the CBS block is utilized to replace the convolutional 
layer which plays a down-sampling role for reducing the loss of small object features. Next, we 
use the SPP module to enrich the expression ability of the feature maps. Meanwhile, the FCA 
module is introduced to improve the detection performance of small object ships under the 
interference of different background environments. The experimental results demonstrate the 
efficiency of SPP-FCA-YOLOv3.  
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