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Abstract	

In	this	paper,	a	fixed‐time	sliding	mode	trajectory	tracking	control	method	is	proposed	
for	an	autonomous	surface	vehicles	(ASV)	system	with	perturbations	and	uncertainties.	
First,	the	dynamics	model	of	ASV	in	three‐dimensional	space	is	simplified	to	the	second‐
order	dynamics	with	unknown	model	parameters	and	perturbations.	Based	on	this,	a	
sliding	mode	control	law	based	on	fixed	time	convergence	is	proposed	to	ensure	that	the	
trajectory	 of	 the	ASV	 tracks	 on	 the	 reference	 signal	 in	 fixed	 time,	while	making	 the	
tracking	error	converge	to	0	 in	 fixed	time.	A	sufficient	condition	 for	global	 fixed‐time	
stability	is	derived	using	the	Lyapunov	function	method.	The	proposed	control	method	
is	not	 limited	by	 the	 initial	value	of	 the	 system	and	 thus	outperforms	 the	 finite‐time	
sliding	 mode	 control	 method.	 Finally,	 the	 effectiveness	 of	 the	 proposed	 method	 is	
verified	by	numerical	simulations.	
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1. INTRODUCTION	

Interest	in	autonomous	surface	vehicles	(ASVs)	[1]	has	increased	rapidly	over	the	past	few	
years.	Compared	to	 land‐based	vehicles,	ASVs	are	 located	in	relatively	simpler	environments	
with	more	open	areas	and	fewer	obstacles	and	targets	for	vehicle	navigation.	Therefore,	it	is	
used	 in	 a	 wide	 range	 of	 applications	 in	 various	 aspects	 such	 as	 courier	 management	 and	
transportation.	 Trajectory	 tracking	 control	 of	 ASVs	 [2]	 is	 a	 pressing	 problem	 in	 which	 the	
vehicle	must	precisely	track	a	reference	trajectory	and	thus	complete	the	work	task	without	
relying	 on	 time	 constraints[3].	 We	 know	 that	 the	 operation	 of	 ASVs	 is	 subject	 to	 complex	
external	 disturbances	 such	 as	 wind,	 rain,	 and	 obstacles,	 as	 well	 as	 unknown	 system	
uncertainties,	 both	 of	which	may	 negatively	 affect	 the	 control	 performance.	 Therefore,	 it	 is	
crucial	to	design	a	robust	control	method	to	overcome	it.	
The	 insensitivity	of	 sliding	mode	control	 (SMC)	 to	parameter	variations	and	disturbances	

makes	it	a	very	effective	robust	control	method.	In	recent	years,	some	remarkable	results	have	
been	achieved	using	SMC	methods	for	the	control	of	controlled	systems.	For	example,	a	SMC	
method	was	proposed	in	the	literature	[4]	for	a	class	of	linear	systems	with	perturbations	to	
achieve	robust	stability.	In	[5],	a	fractional‐order	terminal	sliding‐mode	controller	was	designed	
to	achieve	trajectory	tracking	for	a	robotic	manipulator	with	perturbations	and	uncertainties.	
The	literature	[6]	used	the	SMC	method	for	trajectory	tracking	control	of	ASVs.	However,	the	
state	trajectories	of	the	above	methods	all	reach	the	sliding	surface	in	a	finite	time,	which	makes	
the	system	reach	stability	in	a	finite	time.	
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Nowadays	finite‐time	convergence	has	received	the	attention	of	many	researchers	and	has	
led	 to	many	 remarkable	 results	 [7].	 For	 example,	 in	 the	 literature	 [8],	 a	 class	 of	 finite‐time	
controllers	was	designed	 to	 ensure	 that	 the	 robotic	manipulator	 tracks	 the	upper	 reference	
trajectory	in	 finite	time.	 In	the	 literature	[9],	an	event‐triggered	strategy‐based	sliding	mode	
controller	was	designed	to	guarantee	the	reachability	of	the	sliding	surface	in	a	finite	time.	The	
literature	[10]	studied	the	finite‐time	control	problem	for	unmanned	vehicles.	However,	it	still	
has	poor	convergence	accuracy	for	systems	with	high	convergence	time	requirements,	such	as	
unmanned	vehicles,	robotic	manipulators,	etc.	
To	 achieve	 faster	 convergence	 accuracy,	 fixed‐time	 convergence	 methods	 are	 proposed.	

Fixed‐time	 convergence	 is	 a	 hot	 topic	 and	 a	 large	 number	 of	 researchers	 have	 devoted	
themselves	 to	 this	 research	 [11].	 A	 very	 remarkable	 result	 was	 published	 this	 year	 in	 the	
literature	[12],	which	applied	the	fixed‐time	convergence	algorithm	to	different	SMC	methods	
to	 ensure	 the	 fixed‐time	 stability	 of	 the	 system.	 A	 fixed‐time	 attitude	 coordinated	 tracking	
control	 problem	 was	 solved	 for	 spacecraft	 in	 the	 literature	 [13].	 A	 fixed‐time	 convergent	
adaptive	non‐singular	terminal	sliding	mode	controller	was	proposed	in	the	literature	[14]	for	
a	robotic	manipulator.	To	study	the	control	problem	of	a	second‐order	nonlinear	system	under	
the	influence	of	nonmatching	perturbations,	a	fixed‐time	sliding‐mode	controller	was	proposed	
in	[15]	to	ensure	the	robust	stability	of	the	system	with	mismatch	disturbance.	Meanwhile,	a	
new	 fixed‐time	 observer	 is	 proposed	 in	 [16]	 to	 estimate	 the	 composite	 perturbations	 of	 a	
reusable	launch	vehicle,	including	fault	information	and	uncertainty	
Based	on	the	above	analysis,	this	paper	proposes	a	fixed‐time	convergence	SMC	algorithm	for	

ASV	systems	with	perturbations	and	uncertainties	to	track	the	target	trajectory	and	ensure	the	
global	robust	stability	of	the	closed‐loop	system.	The	controller	has	faster	convergence	accuracy	
than	 finite‐time	 control	 in	 a	 complex	 and	 variable	 environment.	 Finally,	 it	 is	 proved	 by	 the	
Lyapunov	function	that	all	the	state	trajectories	reach	the	sliding	mode	surface	in	fixed	time	and	
the	error	trajectories	also	achieve	fixed	time	stability	on	the	sliding	manifold,	and	the	simulation	
results	verify	the	effectiveness	of	the	proposed	control	method.	

2. PROPERTIES	

2.1. Problem	statement	and	lemma	

Consider	a	nonlinear	system	given	by	
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where	 nx R represents	the	state	information,	 ( , )f x t 	 is	a	continuous	nonlinear	part.	

Lemma	1:	If	exists	a	system	
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Where	 nx R , 0  	 and	 0  	 such	that	   1 1     	 holds.	And	 ( )d t 	 is	a	unknown	

and	bounded	external	disturbance,	i.e.,	 0( )d t d .	Thus,	the	system	is	globally	fixed‐time	stable	

with	the	settling‐time	T	satisfying	 	
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Before	designing	the	fixed‐time	sliding	mode	controller,	the	dynamic	model	of	the	3‐DOF	ASV	

is	described	as	
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where	 3 3( )R R  	 is	a	rotation	matrix,	 3 3M R  is	the	mass	matrix	and	includes	the	effects	
of	both	rigid‐body	and	added	mass,	respectively.	
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In	 relation	 (4),	  Tp x y  		 and	  Tv u w r 		 represent	 the	 position	 vector	 in	 the	

original	 coordinate	 system	 and	 the	 velocity	 vector	 in	 the	 transformed	 coordinate	 system	
separately,	in	which	x,	and	y	are	the	coordinates	of	the	vehicle’s	center	of	gravity,	and	θ	is	the	
heading,	u,	w	 are	 the	 surge	 velocity,	 the	 sway	 velocity	 and	 r	 is	 the	 yaw	 rate;	 3

d R  		 is	 the	
disturbance	 of	 the	 external	 environment;	 3R  		 is	 the	 control	 input	 vector	 of	 ASV	 system.	
Meanwhile,	 3 3( )C v R  	incorporates	 centripetal	 and	Coriolis	 effects,	 and	 3 3( )D v R  		 	 is	 the	
damping	matrix.	
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The	model	of	ASV	is	shown	in	Fig.	1.	
	

	
Figure	1.	The	description	of	3‐DOF	ASV	motion	variable	
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The	parameters	of	the	C(v)	and	D(v)	matrices	we	give	in	the	simulation	section.	Consider	the	
uncertainty	of	the	ASV	system	(4),	i.e.,	 	
	

0 0,C C C D D D      	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (7)	
	

Property1:	The	rotation	matrix	has	the	following	property,	
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Consider	 the	 uncertainty	 of	 the	 ASV	 system(6),	 setting	 2 p   		 from	 (6)	 and	 using	 the	
property	of	the	rotation	matrix	R(θ),	we	obtain	
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The	 lumped	disturbance	 ( )d t 		 contains	 two	portions,	which	 are	 the	 external	 disturbance	

and	the	disturbance	due	to	modeling	uncertainty,	and	can	be	expressed	as	
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where	 C 		 and	 D 		 represent	 the	 uncertainty.	 Next,	 setting	 1 2  		 and	 1
1 2( )v R   	,	

then	system	(4)	can	be	converted	as	
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where	 1
1 2 2 1( , ) ( ) ( ) ( ) ( )f W v R M C v D v v       	 is	a	nonlinear	part.	

Assumption	1:	The	disturbance	d	is	bounded,	i.e.,	there	exists	a	positive	constant	 0d ,	such	

that	 0( )d t d .	 	

2.2. Problem	statement	and	lemma	

To	describe	the	dynamic	equation	of	the	tracking	error	of	the	ASV,	the	desired	signals	 dp 	

and	 dv 	 are	given	here	
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where	  Td d d dp x y  	 	 represents	 the	 desired	 position	 vector,	  Td d d dv u w r

represents	the	desired	velocity	vector	and	 d 	 represents	the	input	of	the	desired	system.	By	

setting	 1d d  	 and	 2d d   	 the	above	system	(12)	is	rewritten	as	
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Assumption	2:	The	desired	trajectories	is	bounded,	i.e.,	there	exists	a	positive	constant	 0 	

such	that	 0d  .	

2.3. The	tracking	error	dynamics	

All	of	the	above	assumptions	are	reasonable	due	to	practical	constraints.	Thus,	the	dynamics	
equation	of	tracking	error	of	the	ASV	can	be	expressed	as	
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T   is	velocity	tracking	error.	To	achieve	the	ASV	track	the	reference	signal,	 it	 is	

essential	to	 introduce	tracking	errors.	The	control	of	the	system	(4)	is	then	converted	to	the	
control	of	the	error	system	(14).	Once	all	the	tracking	errors	converge	in	a	fixed	time,	then	the	
ASV	system	reaches	fixed	time	stability.	

3. DESIGN	OF	FIXED	TIME	SLIDING	MODE	CONTROL	LAW	

SMC	 is	 a	 commonly	 used	 method	 in	 nonlinear	 systems	 with	 remarkable	 robustness	 to	
uncertain	parameters	and	external	disturbances.	The	sliding	mode	control	law	brings	the	state	
or	error	to	the	sliding	mode	surface	and	keeps	it	there	for	the	subsequent	time.	SMC	consists	of	
two	main	steps,	the	first	is	to	select	a	suitable	sliding	mode	surface.	The	second	step	is	to	design	
the	sliding	mode	control	law	to	achieve	robust	stability.	The	purpose	of	this	paper	is	to	propose	
a	fixed	convergence	nonlinear	sliding	mode	surface	and	sliding	mode	controller	that	can	achieve	
global	robust	fixed	time	stability	of	the	system.	

3.1. Design	of	the	sliding	mode	surface	

In	this	subsection,	we	first	construct	a	nonlinear	sliding	surface	 ( )s  	 as	
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Considering	Lemma	1	and	sliding	variables,	the	sliding	mode	tracking	control	law	for	fixed	
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 	 as	control	parameter.	In	practical	applications	of	ASV,	the	
dynamics	 always	 have	 nonlinearities,	 including	 reference	 trajectories	 and	 rotation	 angles,	
which	may	 seriously	 degrade	 the	 performance	 of	 the	 closed‐loop	 system	 and	 even	 lead	 to	
instability.	Considering	these	nonlinear	parts,	it	is	essential	to	construct	a	controller	to	achieve	
the	desired	performance.	In	this	section,	a	sliding‐mode	controller	(19)	is	designed	based	on	
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Proposition	 1:	 The	 closed‐loop	 system	 (14)	 is	 globally	 fixed‐time	 stable	 and	 fixed‐time	
satisfying	
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Proof:	Given	 the	nonlinear	sliding	mode	surface	 (15),	 then	construct	a	suitable	Lyapunov	
function	 0.5 T

sV s s .	The	derivative	of	thefunction	with	respect	to	time	is	given	by	
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According	to	Lemma	1,	it	is	deduced	that	the	system	(14)	starts	from	 0(0)s s 	 and	reaches	

the	sliding	surface	in	a	fixed	time	 0( )T s .	The	reachability	of	the	sliding	surface	in	a	fixed	time	
has	 been	 proved	 by	 the	 Lyapunov	 analysis	 described	 above.	 The	 accessibility	 of	 the	 sliding	
surface	ensures	that	any	primitive	state	in	space	can	reach	the	sliding	surface	in	a	fixed	time	
without	restriction	in	the	approach	process	 0s  .	In	addition,	 0( )T s 	 is	given	as	follows	
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From	equation	(15),	it	can	be	seen	that	once	all	the	state	trajectories	reach	the	sliding	mode	

surface,	the	system	state	can	be	written	as	
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Invoking	Lemma	1	once	more,	it	is	concluded	that	 ( )t 	 starting	at	 1 10(0)  	 reaches	the	
origin	in	a	fixed	time	satisfying	
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Finally,	the	closed‐loop	system	(14),	(15),	and	(19)	reach	the	origin	at	a	fixed	time,	which	is	

bounded	by	(20).	We	can	conclude	that	a	sliding	mode	surface	(15)	ensures	that	 the	sliding	
trajectory	arrives	at	the	sliding	manifold	at	a	fixed	time	 0( )T s ,	and	also	ensures	that	the	system	

trajectory	is	stable	at	a	fixed	time	 0( )T  	 within	the	sliding	manifold.	This	completes	the	proof.	

Remark	1:	In	this	paper,	the	global	robust	fixed‐time	stabilization	of	the	system	states	(4)	
and	(14)	is	achieved	by	using	a	nonlinear	sliding	variable	(15)	with	exponential	coefficients	of	
the	state‐dependent	variables	and	 the	designed	sliding‐mode	controller	 (19).	Therefore,	 the	
closed‐loop	system	(14)	can	reach	the	origin	in	a	fixed	time	and	is	not	limited	by	the	initial	value	
of	the	system	state.	

4. SIMULATION	

Consider	an	autonomous	surface	vehicle	systems	with	uncertainty	and	disturbance	given	by	

[9].	 and  2sin(0.2 ) 2 1.5cos( ) 2 cos(2 ) 1d t t t    
	 	 as	 unknown	 disturbance.	 The	

uncertainty	of	the	system	is	assumed	to	be	 0 00.1 , 0.1C C D D    .	The	initial	states	of	ASVs	

are	 given	 as	  2 3 1p  
		 and	  0 0 0v 

	.	 Some	 important	 control	 parameters	 are	

selected	 as	 1 11.4, 0.01   	,	 2 22.4, 0.3   	.	 The	 desired	 position	 signal	 is	 chosen	
 sin( ) cos(2 ) 2sin(2 )t t t

	.	Meanwhile,	 the	 control	 gain	 is	 chosen	 as	 20k  	.	 The	 simulation	
lasts	for	20	seconds	and	the	results	are	shown	below.	
Fig	2	gives	a	comparison	of	the	actual	running	trajectory	and	the	reference	trajectory,	where	

(a)	is	a	comparison	of	the	position	signal	and	(b)	is	a	comparison	of	the	velocity	signal.	It	can	be	
seen	that	both	position	trajectory	and	velocity	information	are	tracked	on	the	reference	signal.	
The	evolution	of	the	trajectory	tracking	error	with	time	is	given	in	Fig	3,	where	(a)	is	the	position	
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tracking	error	and	(b)	is	the	velocity	tracking	error.	It	can	be	seen	that	all	the	errors	converge	
to	0	in	a	fixed	time,	which	is	sufficient	evidence	that	the	fixed‐time	sliding	mode	control	law	
achieves	robust	stability	of	the	system.	A	comparison	of	the	phase	diagrams	of	the	actual	and	
reference	trajectories	is	given	in	Fig	4,	and	it	can	be	seen	that	the	tracking	effect	is	satisfactory.	
The	sliding	mode	trajectories	are	given	in	Fig	5,	and	it	can	be	seen	that	all	the	sliding	trajectories	
converge	to	0.	

	
(a) 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (b)	

Figure	2.	Diagram	of	the	comparison	chart	of	ASV's	trajectory	and	reference	trajectory.	

	
(a) 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (b)	

Figure	3.	Diagram	of	the	tracking	errors	of	ASV.	

	
Figure	4.	Diagram	of	reference	and	actual	trajectories.	
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Figure	5.	Diagram	of	sliding	mold	trajectory	of	ASV.	

5. CONCLUSION	

In	this	paper,	a	fixed‐time	SMC	method	is	proposed	to	achieve	tracking	control	and	robust	
stability	of	the	system	for	the	trajectory	tracking	problem	of	the	ASV	system.	A	nonlinear	sliding	
mode	surface	is	designed	so	that	not	only	all	state	trajectories	reach	the	sliding	manifold	in	fixed	
time,	but	also	ensures	that	the	system	can	converge	to	the	origin	in	fixed	time	on	the	sliding	
mode	surface	as	well,	and	the	convergence	time	is	independent	of	the	original	conditions	of	the	
system.	
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