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Abstract	
In	 order	 to	 solve	 the	 problem	 that	 existing	 image	 super‐resolution	 reconstruction	
models	 are	 prone	 to	 poor	 visualization	 and	 structural	 distortion	 when	 generating	
images,	we	propose	a	Deep	Gradient	Guidance	Network	(DGGN).	This	model	is	optimized	
by	means	 of	 adversarial	 training	 to	 improve	 the	 perceptual	 effect	 of	 the	 generated	
images.DGGN	introduces	a	gradient	branch	to	convey	the	features	of	the	gradient	image	
and	fuses	the	gradient	information	with	the	image	branch	to	prevent	the	distortion	of	
the	 image	edges.	We	also	refer	 to	networks	such	as	MSRB	and	ResNext,	and	propose	
improved	multi‐scale	residual	units	 that	are	applied	 to	 the	base	module	of	 the	 image	
branch	and	the	gradient	branch	in	order	to	enable	the	model	to	better	access	multi‐scale	
information.	 The	 discriminative	 network	 uses	 Wasserstein	 distance	 with	 gradient	
penalty	to	improve	the	stability	of	network	training.	Experimental	results	show	that	our	
algorithm	performs	well	in	perceptual	evaluation,	and	it	can	effectively	prevent	image	
structure	 distortion	 and	 improve	 the	 quality	 of	 the	 generated	 images	 compared	 to	
perceptually‐driven	 algorithms	 such	 as	 SRGAN,	 ESRGAN,	 and	NatSR.	 In	 addition,	 our	
model	has	a	low	computational	complexity	of	22.6	GFLPOs,	which	is	about	1/4	and	1/10	
of	 the	 computational	 complexity	 compared	 to	 ESRGAN	 and	 SPSR,	 respectively.	 This	
innovative	DGGN	model	 is	expected	to	make	a	significant	breakthrough	 in	the	 field	of	
image	 super‐resolution	 by	 improving	 the	 perceptual	 effect	 of	 generated	 images	 and	
reducing	the	computational	complexity.	
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1. INTRODUCTION	
Single Image Super-Resolution Reconstruction (SISR) is one of the research areas that have 

received much attention in the field of computer vision. Its main goal is to generate 
corresponding high resolution images (High Resolution, HR) from single or multiple low 
resolution images (Low Resolution, LR) in order to improve the visual perception quality of the 
images and provide richer information about the image details. This problem is considered as 
one of the classical representatives of the underlying vision problem [1]. 

Image super-resolution reconstruction has a wide range of applications in many fields, 
including but not limited to video surveillance, remote sensing imaging, medical image analysis, 
etc. [2]. With the development of deep learning, significant progress has been made in image 
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super-resolution reconstruction methods. Initially, Dong et al. proposed an image super-
resolution reconstruction algorithm based on convolutional neural network, i.e., SRCNN (Image 
Super Resolution Convolution Neural Network) [3].SRCNN utilizes a convolutional neural 
network to learn the mapping relationship from low-resolution image to high-resolution image, 
but it only contains three convolutional layers which is not good at extracting deep feature 
information, and it needs to interpolate and enlarge the low-resolution image by a double-cubic 
interpolation algorithm before inputting it into the network for reconstruction, which increases 
the computational complexity[4]. Subsequently, researchers proposed more efficient, faster and 
better image super-resolution reconstruction algorithms, one of which is FSRCNN (Fast Image 
Super-Resolution Convolution Neural Network) [5], which was improved from SRCNN by Dong 
et al. Shi et al. [6] proposed a new up-sampling method, Effecent Subpixel Convolutional Layer 
(ESPCN), which utilizes pixel shifting to expand the image size without the zero complement 
operation of the inverse convolution, effectively avoiding the problems of image edge distortion 
and the image "checkerboard effect". Ledig et al [9] proposed Image Super-Resolution 
Generative Adversarial Network (SRGAN) based on Generative Adversarial Network, which 
optimizes the model by perceptual loss and still obtains perceptually better images at 4× high 
magnification factor[7] [8]. Lim et al [10] constructed an Enhanced Deep Residual Network for 
Image Super-Resolution (EDSR) to remove the BN layer from SRResNet to reduce the 
computational complexity of the model and at the same time to improve the model performance 
and to prevent artifacts in the image. 

Although existing image super-resolution reconstruction algorithms based on deep learning 
and generative adversarial networks have improved in terms of image perceptual quality, and 
objective metrics, some of the algorithms, e.g., ESRGAN [11], SRGAN [9], NatSR [12], etc., do not 
recover the high-frequency details well, and produce geometrical distortions in the 
reconstruction process. In this regard, Wang et al [13] proposed SFTGAN, which uses semantic 
segmentation probability maps as a priori information to guide the reconstruction, making the 
model easier to recover the real texture.Sun et al [14] used gradient distributions and gradient 
fields to guide the super-resolution reconstruction prior to representing the image gradients, 
whose statistical correlations are modeled based on the parameters observed in the LR image 
to estimate the HR edge-related parameters, and the modeling process is done point by point, 
which resulting in high algorithmic complexity and poor flexibility.Zhu et al [15] complete the 
modeling by collecting a dictionary of gradient patterns and combinations of deformable 
gradients. 

The discriminative network uses WGAN-GP [17] containing gradient penalties to improve the 
stability of generative adversarial network training and to prevent the degradation of 
generative network performance caused by the disappearance of the gradient of the 
discriminative network. Comparing with the existing image super-resolution reconstruction 
models, the main contributions of this paper are: 

a) Propose a gradient-guided image super-resolution reconstruction model, where the 
generative network adds gradient branches on top of the baseline image branches to prevent 
structural distortion of the generated image, and at the same time, utilizing the advantages of 
the network structure of ResNext [18] and Inception [19], an improved multi-scale residual unit 
is proposed as the base module to increase the network sensing field while reducing the The 
computational complexity of the model is reduced while increasing the network receptive field. 

b) The discriminative network adopts Wassertein distance with gradient penalty to prevent 
the gradient of the discriminator from disappearing and improve the stability of the whole 
generative adversarial network training. 
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2. PROPERTIES	
In order for the model to easily detect image features at different scales, Li et al [20] proposed 

the Multi-Scale Residual Block (MSRB), which consists of multi-scale feature fusion and local 
residual learning.The MSRB is a dual bypass structure, where the two bypasses use 3×3 and 5×5 
convolution kernels, respectively, and the two bypasses share information between them . 

Let and be the inputs and outputs of the MSRB, respectively, then the MSRB is defined as: 
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where w is the convolution weights, b is the bias, and R denotes the ReLU activation function. 
Finally the residual connection is used to sum the output and input: 
 

 '
1n nM S M    (2) 

   

2.1. WGAN‐GP	 	

WGAN uses Wassertein distance instead of the traditional JS scatter [21], and all parameters 
of the WGAN discriminator training should satisfy the Lipschitz condition, i.e., for two inputs x1 
and x2: 

 1 2 1 2| ( ) ( ) | | |D x D x x x    (3) 

WGAN directly adopts the method of weight clipping to ensure that all training parameters 
of the discriminative network are bounded.WGAN effectively alleviates the problem of 
instability during the training of generative adversarial networks, but WGAN adopts the method 
of weight clipping to ensure that the parameters of the discriminative network satisfy the 
Lipschitz condition, which is susceptible to the problem of vanishing or exploding gradient. 

WGAN-GP does not need to use weight clipping and is only effective for regions in the real 
and generated sample sets as well as regions between true and false samples, there is no 
problem of disappearing or exploding gradient, the gradient is controllable and easy to be 
adjusted to the appropriate size. 

2.2. Gradient	image	computation	 	

The gradient of an image refers to the rate of change of a pixel point in an image along both x 
and y directions. The gradient of an image describes the rate of change of the image and the 
edge information of the image, the part with larger gradient value and large change of gray value 
is the edge part of the image; the part with smaller gradient value and small change of gray value 
is the smooth part of the image. 
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Equation (4) shows that the variation of any pixel (x,y) in the image along the x-axis is the 
difference between the pixel value on the right side of the pixel and the pixel value on the left 
side of the pixel; and the variation along the y-axis is the difference between the pixel value on 
the lower side of the pixel and the pixel value on the upper side of the pixel, and the two 
components form a two-dimensional vector, which is taken to be the tangent of the angle θ of 
the gradient of the image. 

3. IMAGE	GRADIENT	AND	GENERATIVE	ADVERSARIAL	NETWORK	 IMAGE	
SUPER	RESOLUTION	RECONSTRUCTION	ALGORITHMS	 	

3.1. Generation	Network	 	

Aiming at the current image super-resolution reconstruction model is prone to structural 
distortion, excessive image smoothing, and poor perception, this paper proposes a depth 
gradient guidance network DGGN, whose generative network structure is shown in Figure 1: 
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Figure	1. Deep Gradient Guidance Network 

 

DGGN consists of an image branch and a gradient branch. The image branch has basically the 
same structure as the existing deep learning-based image super-resolution reconstruction 
model, which consists of one or more convolutions to complete the shallow feature extraction, 
and then uses multiple base modules to complete the deep feature extraction, sends the 
extracted deep features to the upsampling module to complete the amplification, and finally 
undergoes a layer of convolution to obtain the final output.  

For the computation of gradient in Fig. 1, let A=[1,0,-1] be a 1×3 convolution kernel, AT be the 
transpose of A, ∇S_x and ∇S_y be the gradient of the image S in the x and y directions, 
respectively, and "*" denotes the convolution operation, the magnitude of the gradient of the 
image S can be obtained in the following way: 
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 (5) 

In Eq. (5), A is used to calculate the gradient in the x-direction and AT is used to calculate the 
gradient in the y-direction. Since the magnitude of the gradient is sufficient to represent the 
degree of sharpening of the image edges, the direction of the computed gradient is not 
considered in this paper. 

Inspired by MSRN [20] and combining the advantages of ResNext [18] and Inception [19] 
networks, this paper proposes an improved multiscale residual unit, the structure of which is 
shown in Fig. 2. The DGGN multiscale residual unit extends the double-bypass structure of 
MSRB into four branches, uses a 1 × 1 convolution before and after each of the 3 × 3 and 5 × 5 
convolutions to improve its nonlinear mapping capability, and finally the extracted multiscale 
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features are fused and the inter-channel dependency is enhanced by introducing the SEblock 
[22] channel attention module. 

 
Figure	2. Comparsion of multi scale residual unit 

 

The multi-scale residual cell of DGGN is similar to Resnext, but differs from Resnext in the 
following ways:  

(1) DGGN is used to accomplish the task of image super-resolution reconstruction, so the 
residual unit of DGGN does not contain the BN layer, meanwhile, DGGN uses the LeakyReLU 
activation function, which ensures that the activated features can still contain rich detail 
information. 

(2) The 1×1 convolution in the residual unit of DGGN has the same number of input and 
output feature channels, and the main role of the 1×1 convolution in Resnext is to map high-
dimensional features to low dimensions. 

(3) DGGN can capture multi-scale information by 3×3 convolution and 5×5 convolution, and 
Resnext mainly consists of 3×3 convolution 

3.2. discriminant	network	 	

The structure of the discriminant network is shown in Fig. 3. The discriminant network is 
roughly similar to VGG, but uses a convolutional kernel of 4 × 4 with a step size of 2 for 
downsampling. Same as WGAN, the last layer of the discriminative network in this paper does 
not use Sigmoid, but the discriminative network in this paper uses gradient penalty to penalize 
the gradient paradigm of the discriminative network for each input independently, and the use 
of the BN layer modifies the gradient along with the batch information, so the discriminative 
network in this paper does not use the BN layer. 
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Figure	3. Architecture of discriminator 

3.3. loss	function	 	

The objective function of this paper can be expressed as: 
 

 gradadvpixel grad adv grad
percept IB IB IB IB GBL L L L L L L            (6) 
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where L_percept is the perceptual loss [23], using VGG as the feature extraction network. 
Noting that φ_i (∙) is the feature map output from the ith convolutional layer of the VGG network, 
the perceptual loss is denoted as 

 1
1

1

1
ˆ( | ( ) ( ) | )

n

percept
i

L x x
n

 


   (7) 

That is, the L1 distance is calculated between the generated image and the original image 
after VGG extraction of features. 

4. EXPERIMENTS	 	
4.1. Experimental	environment	setup	 	

The experimental environment of this paper is as follows: the CPU uses i5 13400F; the GPU 
is NVIDIA RTX3060 with 12GB of video memory and 32GB of RAM. all the experiments are 
conducted in Ubuntu22.04 environment, and the deep learning frameworks are PyTorch2.0 and 
CUDA12.0. 

4.2. Data	set	

All experiments in this paper use the DIV2K dataset, a total of 1000 images with 2K resolution, 
of which 800 are in the training set, and 100 are in the validation set and test set. 800 images in 
the training set are cropped into sub-images of size 480×480 in step 240, and after cropping, a 
total of 32,592 images are included in the training set, and random flipping is used to enhance 
data with a probability of 0.5 to the images. Horizontal flipping is performed for data 
enhancement, the input low resolution image size is 48×48 and the corresponding high 
resolution image size is 192×192. 

4.3. Analysis	of	experimental	results	

In order to prove the effectiveness of gradient branching, this paper verifies for gradient 
branching, removes the gradient branching and only retains the image branching, meanwhile, 
in Eq. (12), takes the values of μ, ε and η as 0, and calculates the PI values for the two cases, and 
the results are shown in Table 1: 

 

Table	1.	Gradient branch validity verification 

 Set5 Set14 BSD100 Urban100 
gradient-free 

branching 
3.5716 3.0795 2.7136 3.9815 

branch with gradient 3.3543 2.7565 2.4097 3.5936 
 

 

The results in Table 1 show that when the generative network does not contain gradient 
branches, the performance is significantly lower than the model when it contains gradient 
branches. When the generative network contains gradient branches, the PI values on the four 
test sets decrease by 0.2173, 0.3230, 0.3039, 0.3879 respectively compared to no gradient 
branches, indicating that the model in this paper produces images with higher perceptual 
effects when the generative network contains gradient branches. 

In this paper, some of the classical PSNR driving algorithms EDSR [10], RCAN [26], RDN [27], 
DBPN [28] and some of the perceptual driving algorithms SRGAN [9], ESRGAN [11], NatSR [12], 
and SPSR [16] are selected to compare with the algorithms in this paper, and the results are 
shown in Tables 2 and 3, respectively: 
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Table	2.	Objective evaluation index of different algorithms on test detasets 

 Set5 Set14 BSD100 Urban100 
EDSR[10] 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 
RCAN[26] 32.63/0.9002	 28.87/0.7889	 27.77/0.7436	 26.82/0.8087	
RDN[27] 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 

DBPN[28] 32.47/0.8980 28.82/0.7860 27.72/0.7400 26.38/0.7946 
ESRGAN[11] 30.33/0.8521 26.10/0.6996 24.53/0.6327 22.74/0.6824 

SRGAN[9] 29.87/0.8494 26.44/0.7132 24.97/0.6445 23.02/0.6875 
NatSR[12] 30.92/0.8626 27.23/0.7365 25.66/0.6715 23.72/0.7132 
SPSR[16] 30.30/0.8439 26.44/0.7141 24.80/0.6428 23.10/0.6942 

DGGN(Ours) 30.38/0.8452 26.09/0.7029 24.49/0.6273 23.12/0.6864 
 

Table	3.	Perceptual index of different algorithms on test datasets 

 Set5 Set14 BSD100 Urban100 
EDSR[10] 5.9857/0.2088 5.2630/0.2963 5.2610/0.3249 4.9844/0.2727 
RCAN[26] 6.3691/0.2164 5.7150/0.3106 5.7581/0.3320 5.4178/0.3015 
RDN[27] 6.0092/0.2135 5.4633/0.3040 5.5412/0.3300 5.2502/0.2905 

DBPN[28] 6.1324/0.2109 5.4677/0.2986 5.4896/0.3259 5.1363/0.2838 
ESRGAN[11] 3.7522/0.0748 2.9261/0.1329 2.4793/0.1614 3.7704/0.1229 

SRGAN[9] 3.9820/0.0882 3.0851/0.1663 2.5459/0.1980 3.6980/0.1551 
NatSR[12] 4.1648/0.0939 3.1094/0.1758 2.7801/0.2114 3.6523/0.1500 
SPSR[16] 3.2743/0.0644	 2.9036/0.1318 2.3510/0.1611	 3.5511/0.1184 

DGGN(Ours) 3.3543/0.0721 2.7565/0.1454 2.4097/0.1645 3.5936/0.1107 
 

Table 2 Objective evaluation metrics of each algorithm, Table 2 analysis shows that the 
residual channel attention based algorithm RCAN obtained the highest PSNR and SSIM values 
in the four test sets. Algorithms using perception-driven algorithms, such as SPSR and ESRGAN, 
have lower PSNR and SSIM values than algorithms driven by PSNR, and since the optimization 
objective of SRGAN consists of only perceptual and antagonistic losses, and does not include the 
L1 or L2 losses, SRGAN has the lowest PSNR and SSIM values.The DGGN has the highest PSNR 
and SSIM values in the four test sets, which are similar to the SPSR are close to each other, the 
PSNR values in Set5 and Urban100 test sets are improved by 0.08 and 0.02 than SPSR 
respectively, and the SSIM values are not much different. 

Table 3 Perceptual evaluation metrics of each algorithm, synthesizing the results in Table 2, 
it can be found that algorithms with higher PSNR and SSIM values also have higher values of the 
perceptual metrics PI and LPIPS, generating smoother images. While algorithms with 
perception-driven algorithms have lower PSNR and SSIM values, and lower PI and LPIPS values, 
but generate images with richer detail information, which are more satisfying to human visual 
perception effects. Table 3 analyzes found that overall, the PI and LPIPS values of the DGGN 
algorithm are close to the SPSR, with a decrease of 0.1488 in the PI value over the SPSR on the 
Set14 test set and a decrease of 0.0077 in the LPIPS value over the SPSR on the Urban100 test 
set. 

4.4. Performance	Comparison	of	Classical	Perception‐Driven	Algorithms	

In order to further verify the effectiveness of the algorithms in this paper, the number of 
parameters and the computational amount of five classical perception algorithms, namely 
SFTGAN, ESRGAN, NatSR, SPSR, and SRGAN, are selected for comparison, and the results are 
shown in Table 4: 
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Table	4.	Params and FLOPs of different perception-driven algorithms 

 SFTGAN[13] NatSR[12] ESRGAN[11] SRGAN[9] SPSR[16] DGGN(ours) 
Params 1.8M 5.0M 16.7M 0.7M 24.8M 14.6M 
FLOPs 0.8G 12.5G 89.7G 7.0G 265.1G 23.7G 

 
The analysis of the results in Table 4 shows that the number of parameters of DGGN is 14.6M, 

which is lower than the 24.8M of SPSR and the 16.7M of ESRGAN, and the floating-point 
computation of DGGN is 23.7GFLOPs, which is 1/10 and 1/4 of that of SPSR and ESRGAN, 
respectively, which proves that this paper's algorithm still obtains results comparable to that of 
SPSR with the number of parameters and computation being smaller than that of SPSR. SPSR 
comparable results. 

 

 
 

Figure	4. Visualize results of different algorithms 

The visualization results of some selected classical perception-driven algorithms are shown 
in Figure 4. The human eye brow details and building details are selected for local zoom. The 
algorithms using perception-driven all use generative adversarial network and perceptual loss 
optimization, which can generate images with more realistic effect and better perceptual quality, 
for the human eye brow details, the algorithms using perception-driven all can generate images 
with higher visual effect, SFTGAN, SPSR and DGGN are three methods using a priori information 
to guide the reconstruction, and DGGN generates more rich details and generates more realistic 
image effect than SFTGAN and SPSR. are richer and produce more realistic image results. For 
building details, some of the perceptual algorithms, such as SRGAN and NatSR, have structural 
distortion, SFTGAN uses semantic segmentation probability map to guide the reconstruction, 
and its guiding effect is greatly affected by the semantic segmentation model, and it cannot 
guide the reconstruction well, DGGN and SPSR algorithms both use gradient information to 
guide the reconstruction, and DGGN adopts multi-scale residual unit to extract features, the 
DGGN uses multi-scale residual unit to extract features, the feature information obtained is 
richer, and the visual effect of the final generated image is better than the algorithms such as 
SPSR and ESRGAN. 
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5. CONCULUSION	 	
In this paper, we propose an image super-resolution reconstruction model, DGGN, based on 

gradient-guided generative adversarial networks, which introduces improved multiscale 
residual units by borrowing the existing ResNext, Inception, and MSRB structures and applying 
them to the image branch and gradient branch of generative networks. This is done to make it 
easier for the model to acquire multi-scale feature information, thus solving the problem that 
existing image super-resolution reconstruction models are prone to structural distortion when 
generating visual effects. In order to improve the stability of training, the discriminative 
network adopts the WGAN-GP method containing gradient penalty. Compared with the 
perception-driven based method SPSR, DGGN not only generates images with higher visual 
quality, but also reduces the number of model parameters and computational complexity. 
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