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Abstract	
With	 the	 development	 of	 deep	 learning	 technology,	 the	 integration	 of	 semantic	
segmentation	 and	 deep	 learning	 has	 made	 great	 technical	 breakthroughs.	 Image	
semantic	segmentation	has	become	one	of	the	research	hotspots	in	computer	vision	field.	
This	technology	has	been	widely	used	in	medical	image	segmentation,	remote	sensing	
image	detection,	intelligent	robot	and	other	fields.	This	paper	first	describes	the	basic	
network	model	of	semantic	segmentation	 in	detail,	then	 introduces	the	application	of	
semantic	 segmentation	 in	 different	 fields,	 and	 finally	 looks	 forward	 to	 the	 future	
research	focus	of	semantic	segmentation.	
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1. INTRODUCTION	
Image semantic segmentation technology refers to the process of assigning individual class 

labels to each pixel in an image based on its grayscale, color, texture, and other features. This 
division of the image into visually meaningful and distinct regions allows for a more precise 
understanding of the image [1]. With the advancement of intelligent living, semantic 
segmentation technology has become increasingly important in various fields such as 
autonomous driving, medical image processing, video surveillance, virtual interaction, and 
augmented reality. Traditional methods of semantic segmentation include threshold-based[2], 
region-based[3], edge detection[4], clustering[5], graph-based approaches that utilize 
mathematical theories[6], as well as machine learning methods such as texture primitive forests 
or random forests for constructing pixel classifiers[7]. However, these traditional methods have 
limitations in terms of efficiency and accuracy. They are less efficient in handling low-level 
semantic features such as color, shape, and texture in images, resulting in longer segmentation 
times and lower accuracy. Additionally, these methods struggle to recognize occluded objects[8].  
With the advancement of hardware performance and the rise of deep learning, Deep 
Convolutional Neural Networks (DCNNs) have emerged as powerful tools for semantic 
segmentation[9]. In 2015, Long et al. introduced Fully Convolutional Networks (FCNs)[10], 
which applied DCNNs to semantic segmentation. This marked the beginning of an era 
dominated by DCNNs in the field of semantic segmentation. DCNNs allow for end-to-end 
training, enabling the extraction and learning of semantic-level image features. This allows the 
network to actively infer the semantic information of each pixel and classify them, leading to 
higher segmentation accuracy and computational efficiency.  Existing literature provides 
comprehensive overviews of semantic segmentation, covering various methods and data 
patterns. Another study focuses on the issue of varying quality in training datasets for semantic 
segmentation models, analyzing both fully supervised and weakly supervised training 
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approaches[11][12]. To provide a more in-depth analysis of the current development of deep 
neural networks in semantic segmentation, this paper supplements and enriches the existing 
knowledge by exploring different technical characteristics in the field. The advantages and 
disadvantages of each category are analyzed, and experimental results of different models are 
compared using commonly used datasets. Finally, the current and future development trends, 
as well as the remaining challenges, are discussed. 

2. SEMANTIC	SEGMENTATION	ALGORITHM	

2.1. Traditional	image	segmentation	algorithm	

Although deep learning currently dominates the research in image segmentation, the 
advantages of traditional image segmentation algorithms cannot be denied. They offer faster 
and more efficient problem-solving capabilities. Traditional image segmentation algorithms can 
still provide valuable insights for solving problems in deep learning. This article will introduce 
three traditional image segmentation methods: threshold-based segmentation, edge detection-
based segmentation, and region-based segmentation. 

2.1.1. Threshold based segmentation method 
Thresholding is particularly suitable for images with different grayscale levels for the 

background and the target. The basic idea is to calculate one or multiple grayscale thresholds 
based on the grayscale features of the image. Each pixel's grayscale value is compared with the 
computed thresholds, and based on the comparison results, the pixels are classified into 
appropriate categories. Therefore, the key aspect of this method is to determine the optimal 
grayscale thresholds based on certain criterion functions. If the image contains only two classes, 
the target and the background, a single threshold can be selected for segmentation, which is 
known as single-threshold segmentation. However, if there are two or more types of targets in 
the image, the single-threshold segmentation method is not applicable. In such cases, multiple 
thresholds are used to segment the targets, which is known as multi-threshold segmentation. 
Common methods in thresholding include fixed threshold segmentation, histogram-based 
bimodal method, iterative threshold image segmentation, adaptive threshold image 
segmentation, maximum interclass variance method, mean-based method, and optimal 
thresholding.  

2.1.2. Edge based segmentation method 
Edge detection segmentation is a commonly used method for image segmentation. In 

different regions of an image, there are grayscale and color changes, which result in abrupt 
transitions at the edges between these regions. Grayscale-based edge detection is an 
observation-based method where the edges between different regions exhibit step or roof-like 
changes in grayscale values. When transforming the image from the spatial domain to the 
frequency domain, edges correspond to high-frequency components. The differential operator 
is a commonly used edge detection algorithm that utilizes the extremum of first-order 
derivatives and the zero-crossings of second-order derivatives to determine edges. To achieve 
better segmentation results, edge detection algorithms can be used in conjunction with 
complementary segmentation methods. 

2.1.3. Region based segmentation method  
Region-based segmentation methods determine a base region based on certain criteria and 

use it as a starting point for segmentation. There are two fundamental forms of region 
segmentation: region growing and global approaches. In region growing, the segmentation 
starts from a seed pixel and gradually expands by merging neighboring pixels with similar 
properties. In the global approach, the entire image is treated as a whole and segmented into 
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different sub-regions. Common region-based segmentation algorithms include seed region 
growing, region splitting and merging, and watershed segmentation. 

2.2. Semantic	segmentation	algorithm	based	on	convolutional	neural	network	

With the introduction of fully convolutional neural networks (FCNs), their superior feature 
extraction performance compared to traditional segmentation methods has made them the 
mainstream approach in semantic segmentation. Contrary to traditional image segmentation 
methods, FCNs can extract high-level semantic information from images, thus improving 
segmentation accuracy. Since the proposal of FCNs, classic networks such as U-net, PSPnet, and 
Deeplab have emerged, greatly influencing the development of subsequent semantic 
segmentation networks. 

2.2.1. FCN  
Fully Convolutional Networks (FCNs) marked the beginning of semantic segmentation and 

since then, the field has rapidly progressed. The end-to-end training of network models is also 
achieved through FCNs. FCNs have made significant contributions in three aspects: fully 
convolutional, upsampling, and skip connections. In terms of being fully convolutional, while 
conventional CNN classification networks have a fixed input image size determined by the 
network's design structure, FCNs allow for inputs of varying sizes. FCNs replace the last three 
fully connected layers of the CNN classification network with convolutional layers, preserving 
both the spatial information of the image and integrating the output features of the CNN. 
Regarding upsampling, after a series of convolution and pooling operations, the resulting 
feature map size is much smaller than the original image size. To associate the pixels in the 
feature map with those in the original image for pixel-level prediction and minimize 
segmentation accuracy loss, the authors employ deconvolution operations. During feature map 
decoding, deconvolution is used to resize the feature map to match the original image size. As 
for skip connections, FCNs lose many fine-grained details after convolution, pooling, and 
deconvolution operations. By employing skip connections, the shallow-level information and 
high-level semantic information are combined to enhance the model's robustness. Although 
FCNs achieve pixel-level image prediction, they overlook global contextual information. 

2.2.2. U-net 
U-net[13] was initially designed as a segmentation network for medical image segmentation. 

It utilizes an encoder-decoder structure and incorporates skip connections to fuse shallow 
features with high-level semantics. In the encoder section, the image undergoes four 
downsampling operations through a combination of convolutional layers and max-pooling 
layers. With each downsampling step, the channel dimensions of the feature maps double. In 
the decoder section, after each upsampling operation, the feature maps are fused with 
corresponding downsampling feature maps, followed by a halving of the channel dimensions. 
In the final layer of the decoder, a 1x1 convolution is used to adjust the output channel to the 
desired number of classes for classification. However, U-net has notable drawbacks. It suffers 
from slow training speed, as the same features are trained multiple times, resulting in GPU 
resource wastage. It also runs the risk of overfitting, leading to poor generalization of the 
trained network. Furthermore, U-net struggles to simultaneously obtain accurate object 
localization and contextual information. The use of larger patches requires more max-pooling 
operations, which can degrade localization accuracy by losing spatial relationships between 
target pixels and their surroundings. On the other hand, smaller patches can only capture 
limited local information and may lack sufficient background context. 

2.2.3. PSPnet  
The main innovation of PSPnet[14] is the introduction of the pyramid pooling module, which 

aggregates contextual information from different positions of the target and improves the 
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performance of capturing global information. Additionally, auxiliary loss functions are 
incorporated to accelerate the convergence speed during network training.  Given an input 
image (a), the last convolutional layer's feature map (b) is obtained using CNN. Then, the 
pyramid pooling module is applied to acquire representations of different sub-regions. 
Subsequently, upsampling and concatenation layers form the final feature representation (c), 
which carries both local and global contextual information. Finally, the representation is fed into 
a convolutional layer to obtain the final pixel prediction (d). The pyramid pooling module 
integrates features from four pyramid scales. he first parallel branch employs global pooling to 
generate a global feature map. The other parallel branches perform pooling operations on the 
feature map to obtain feature maps of different regions, which are then fused together. Each 
parallel branch utilizes different pooling and 1x1 convolution operations to obtain feature maps 
of different sizes. The low-dimensional feature maps are directly upsampled using bilinear 
interpolation to match the size of the original feature map. Ultimately, the fused feature maps 
from the four parallel branches serve as the global features of the pyramid pooling module. 

2.2.4. Deeplab series 
DeepLab is a semantic segmentation method proposed by Google. In DeepLabv1[15], two 

main issues of deep convolutional neural networks were addressed. The problem of losing 
positional information due to repeated downsampling was solved by using dilated convolutions. 
The problem of coarse segmentation results caused by the spatial invariance of DCNN was 
addressed by using Conditional Random Fields. In DeepLabv2[16], an Atrous Spatial Pyramid 
Pooling (ASPP) module was introduced to tackle the multiscale problem. It involved processing 
the feature map with four different dilated convolutions with varying rates, summing up the 
processed feature maps, and then upsampling them. Additionally, ResNet was used as the 
backbone network in DeepLabv2. In DeepLabv3[17], improvements were made to the ASPP 
module. It included a 1×1 ordinary convolution, three 3×3 dilated convolutions with dilation 
rates of 6, 12, and 18, and the addition of batch normalization (BN) layers. To obtain image-level 
features, global average pooling was applied to the feature map output by the backbone network. 
The new ASPP module had five branches. In DeepLabv3+[18], to achieve better segmentation 
results, the entire DeepLabv3 was used as the encoder for feature extraction. In the decoder, the 
features obtained from the encoder were processed with 1×1 convolutions and upsampled by 
a factor of 4. Low-level features from the backbone network were adjusted with 1 × 1 
convolutions to match the channel dimension and then fused with the upsampled feature maps. 
Finally, the fused feature map underwent two 3×3 convolutions and was upsampled by a factor 
of 4 to restore the original image size. 

2.3. Semantic	segmentation	algorithm	based	on	Transformer	

Inspired by the Transformer model in natural language processing, many researchers have 
attempted to apply Transformer to the field of semantic segmentation. By leveraging the 
attention mechanism of Transformer to establish long-range dependencies, significant 
achievements have been made. Currently, Transformer remains a hot research topic in this 
domain. 

2.3.1. Segmenter 
Segmenter[19] is an encoder-decoder structure based on the Transformer model. Unlike CNN, 

before feeding the image into the encoder, the image needs to be divided into multiple patches 
and flattened into one-dimensional sequences, which are then encoded with positional 
encodings. Compared to convolution-based methods, the encoder of Segmenter is used to model 
the global contextual information of the image. Segmenter has two types of decoders: a linear 
decoder, which performs simple linear mapping, deformations, upsampling, and softmax 
operations on the patches to generate predicted images; and a mask decoder based on 
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Transformer, which differs from the linear decoder by incorporating a set of learnable class 
embedding vectors into the decoder's input. Experimental results show that the mask decoder 
based on Transformer outperforms the linear decoder in terms of segmentation performance. 

2.3.2. SegFormer 
In response to the issues of large parameters and computational complexity of ViT, as well as 

the unfriendliness of the columnar structure for semantic segmentation, the authors of 
SegFormer[20] designed a hierarchical Transformer encoder. When embedding patches, they 
introduced overlapping designs to ensure local continuity of features, and replaced positional 
encodings with deep convolutions to convey positional information. The encoder of SegFormer 
consists of only six linear layers, resulting in smaller parameter size and computational 
complexity, yet it achieves excellent segmentation performance. Compared to CNN networks 
like Deeplabv3+, SegFormer exhibits stronger robustness. 

3. APPLICATION	OF	SEMANTIC	SEGMENTATION	

3.1. Semantic	segmentation	of	remote	sensing	images	

Remote sensing is the process of acquiring information and monitoring the characteristics of 
an area without any physical contact. There are two main types of remote sensing technologies: 
active sensors, such as radar and lidar, and passive sensors, such as satellite imagery [21]. These 
high-resolution images of the Earth's surface provide a wide range of use cases, including 
updating world maps, analyzing forest degradation, and monitoring surface changes. Remote 
sensing images, combined with computer vision and artificial intelligence (AI), are widely used 
for analyzing and processing large-scale Earth surface areas with complex feature distributions. 
Images collected by satellites or unmanned aerial vehicles (UAVs) provide extensive 
information for applications such as urban planning, disaster management, traffic management, 
climate change, wildlife conservation, and crop monitoring. Datasets that include these high-
resolution images and their respective segmentation masks [22] form the foundation for using 
computer vision and AI to analyze remote sensing images. Neural networks enable the 
processing of large amounts of image data for tasks such as object detection, semantic 
segmentation, and change detection. The development in the field of remote sensing has further 
improved satellite sensors, and the introduction of UAV technology is crucial for capturing finer 
details of the Earth's surface. This has led to precise and accurate data processed using AI 
techniques [23]. Remote sensing images of the Earth's surface provide information about land 
cover, which can be divided into different segment classes. Each category assigns a label to each 
pixel while preserving the spatial resolution of the image. Many datasets containing high-
resolution remote sensing images and their segmentation masks are available for various 
applications such as change detection, land cover segmentation, and classification. Common 
land cover categories covered by pixel-level classification include forests, crops, buildings, 
water resources, grasslands, and roads. Researchers have used ViT architecture models to 
effectively add layers and attention mechanisms, improving performance for semantic 
segmentation ofhigh-resolution remote sensing images, such as Efficient Transformer and 
Wide-Context Transformer. 

3.2. Semantic	segmentation	of	medical	images	

Medical image analysis has advanced and integrated scanning and visualization technologies. 
Segmentation techniques are crucial as they can identify and segment medical images to assist 
in further diagnosis and intervention. By identifying and highlighting regions of interest (ROIs) 
in medical images, various important diagnoses can be made, such as detecting brain tumor 
boundaries from MRI images, identifying pneumonia impacts in X-rays, and detecting cancer in 
biopsy sample images.  Recently, there has been a growing demand for image segmentation in 
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this type of analysis, leading to extensive research in developing more accurate and efficient 
models and algorithms. Medical images used for image segmentation tasks can be grouped 
based on imaging modalities, including MRI, CT scans, X-rays, ultrasound, microscopy, 
dermoscopy, and more. Each category includes datasets collected under medical supervision, 
some of which are publicly available.  Due to the existence of these various modalities, the 
technology systems used for medical imaging can vary greatly. Medical imaging system 
developers build these systems according to the requirements of healthcare professionals. The 
generated images are subject to limitations imposed by existing technologies and require the 
involvement of medical personnel for examination [24]. Therefore, the segmentation of these 
images in different biomedical fields requires domain experts who are knowledgeable about 
these systems and spend a significant amount of time reviewing them.  To overcome these 
challenges, the capability of automatic feature extraction has been introduced through deep 
learning-based techniques, which have proven valuable in the context of medical image analysis. 
As segmentation analysis techniques have evolved, many researchers have introduced models 
with improved performance using medical images. One well-known architecture is U-Net, 
which was initially introduced for medical image analysis. Building upon this, several improved 
versions have been developed using medical image datasets for cardiac, lesion, and liver 
segmentation. This demonstrates how improvements in segmentation can greatly benefit the 
medical environment. In recent years, emerging architectures like ViT have also been applied 
in the medical field, including TransUNet [25] and Swin-Unet [26]. They are hybrid Transformer 
architectures that leverage the advantages of U-Net and exhibit better accuracy in applications 
such as cardiac and multi-organ segmentation.  Medical imaging faces certain limitations, such 
as the relatively limited availability of images compared to natural image datasets (e.g., 
landscapes, people, animals, and cars) that consist of millions of images. In the field of medicine, 
there are several imaging modalities, and expertise in each medical domain is required for 
annotating medical images. MRI and microscopy images, in particular, are challenging to 
annotate. Typically, these datasets contain fewer images and are easier to annotate with less 
complex structures and fine boundaries compared to datasets consisting of ultrasound, X-ray, 
and lesion data obtained using existing scanning systems. However, there are still significant 
limitations in accessing these images due to privacy and other medical policies[27]. To 
overcome these limitations in certain datasets, image segmentation challenges with publicly 
available, well-annotated medical image datasets are held several times a year. The majority of 
improvements made in semantic segmentation models are based on these challenge datasets, 
and they serve as benchmark datasets for segmentation tasks. 

3.3. Video	semantic	segmentation	

Computer interaction, augmented reality, autonomous driving cars, and image search engines 
are some applications in the field of complete scene understanding. For these types of 
applications, semantic segmentation contributes more to the complete scene understanding of 
videos. Typically, the idea is to apply semantic segmentation to each frame of high-resolution 
videos, treating the video as a collection of unrelated still images [28]. The common challenge 
in this type of semantic segmentation is the computational complexity of scaling the spatial 
dimension of videos with the temporal frame rate. In video segmentation, it is meaningless to 
remove temporal features and only focus on spatial frame-by-frame features. Considering the 
temporal context of the video is an important factor in video semantic segmentation, even if it 
is computationally expensive. Research has been conducted to reduce this high computational 
cost on videos, and solutions such as feature reuse and feature distortion have been proposed. 
Cityscapes and CamVid are some of the largest video segmentation datasets available for frame-
by-frame methods. Recent papers have proposed segmentation methods such as selectively re-
executing feature extraction layers, feature distortion based on optical flow, and fixed-budget 
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keyframe selection strategies based on LSTM. However, a major issue with these methods is that 
they pay less attention to the temporal context of the video. Researchers have demonstrated 
that utilizing the optical flow of videos as temporal information to accelerate uncertainty 
estimation is meaningful in order to meet the spatial and temporal context requirements. VisTR, 
TeViT, and SegFormer are some Transformer models used for video segmentation tasks. 

4. CONCLUSION	
This paper summarizes traditional segmentation methods and deep learning-based semantic 

segmentation methods, and introduces the application areas of semantic segmentation 
technology. Based on existing research achievements, the future research focuses of semantic 
segmentation are discussed.  (1) Real-time semantic segmentation. In line with practical 
application needs, lightweight segmentation networks need to be developed for real-time 
segmentation. It is crucial to ensure both accuracy and efficiency in segmentation so that 
semantic segmentation can be widely applied in practical scenarios.  (2) Sample imbalance 
problem. Data is the foundation of semantic segmentation. It is important to explore methods 
that can achieve high accuracy with limited sample data and allow the network to converge 
quickly even in the presence of challenging samples.  (3) Unsupervised domain adaptation. 
Due to the difficulty in obtaining ground truth labels for data and the poor generalization ability 
across scenes, the development of unsupervised domain adaptation methods has been 
promoted. Unsupervised domain adaptation utilizes deep learning models for feature 
extraction and alignment to improve model transferability. Further research is needed to better 
understand how to perform feature alignment effectively. 
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