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Abstract

The fuzzy data envelopment analysis model with assurance regions (fuzzy DEA/AR
model) is a widely used non-parametric method for assessing the relative fuzzy
efficiency values of decision making units(DMUs) with imprecise input and output
variables. The conventional fuzzy DEA/AR model is &-cut based, which uses non-linear
mathematical programming for calculating the upper and lower bounds of the DMUs’
fuzzy efficiency values. The conventional approach has two limitations: its nonlinear
characteristic always generates lower accuracy efficiency value assessments, and the
a-cut pased characteristic leads to a high computational load. We propose a novel fuzzy
DEA/AR model which is independent of different &-cut Jevels and linear to address
these two drawbacks. The @-cutindependency feature results in a significant reduction
in the computational demands, and the linear feature contributes to accuracy
improvements. We also present an empirical study to demonstrate the applicability of
the proposed model.
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1. INTRODUCTION

Data envelopment analysis (DEA) is a widely used non-parametric method that evaluates the
relative efficiency value of decision making units (DMUs) with multiple inputs and outputs.
Based on Farrell’s production efficiency theory[1], DEA model can calculate the relative
efficiency value of DMUs using only the input and output data; the production function is not
pre-set. Since its initial introduction in 1978 by Charnes et al. [2], the DEA model has been
extended resulting in many well-known derived models, such as the CCR-DEA model [2], BCC-
DEA model [3], Dynamic DEA model [4], DEA/AR model [5], and so on. However, all of these
DEA models have two challenges that hinder their application; these two challenges have been
addressed individually in the literature, and are discussed below.

The first challenge with the DEA models is that they cannot deal with DMUs with vague or
imprecise inputs and outputs. The DEA models require the accurate measurement for all of the
input and output variables. However, in many cases, the obtained data for the inputs and
outputs are vague or imprecise due to  information deficiencies or computational errors.
Recently, many researchers have made great efforts in constructing alternative fuzzy DEA
models to deal with the vague variables. One way to manipulate vague data into crisp data
directly is via a probability distribution, but this method needs either a priori predictable
regularity or a posteriori frequency determination to construct, which is not possible in many
cases. Another way is to represent the imprecise data by membership functions based on fuzzy
set theory [6, 7]. This method provides an important theoretical basis for the DEA models to
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deal with imprecise data. Many researchers [8-10] have used the concept of membership
functions to introduce algorithms for fuzzy DEA models. These algorithms can be classified into
four categories: fuzzy ranking [11], de-fuzzification [12], tolerance [13],and &-cut based [14]
methods, among which the fourth method has been widely applied in different problem
domains. The &-cut based method, first proposed by Meada et al. [14], has been further
improved by Satti et al. [15], Liu [16], and Zhou et al. [17]. Nowadays, fuzzy DEA models are
usually transformed into a parametric programming problem with the @-¢utmethod. DMUSs’
fuzzy efficiency values can be calculated by solving the parametric programming problem at
different a-cut Jevels.

The second challenge in the DEA models is that they permit every DMU to choose the weights
that are most favorable to themselves when calculating the ratio of the aggregated outputs to
the aggregated inputs. Nevertheless, owing to the restrictions present in production situations
in the real world, some weights must be limited to a specific region. To address this challenge,
the concept of an assurance region (AR) , first proposed by Thompson et al. [18, 19], is used
to restrict the ratio of any two weights to a reasonable region derived from experts’ opinions
[20-22]. The resulting DEA/AR model has been widely used for efficiency assessments of a
commercial bank [23], hotel industry [24], and other areas.

As a countermeasure to solve the above two challenges together, Liu and Chuang [5] has
merged the concept of assurance regions into fuzzy DEA models under a constant return to scale
(CRS) assumption to construct the fuzzy DEA model with assurance regions (the fuzzy DEA/AR
model), and Zhou et al. [17], Lai et al. [25] has further developed the fuzzy DEA/AR model based
on &-cuts These fuzzy DEA/AR models have been used for assessing the seismic efficiency of
reservoir dams during earthquakes [26], the efficiency of banking industry [27], and so on.
However, these fuzzy DEA/AR models still have two limitations. Firstly, they use non-linear
mathematical programming for the upper and lower bounds of fuzzy efficiency values
calculations, which leads to a lower accuracy of the efficiency value estimations. Some
researchers (Pourmahmoud and Bafekr [28], Sanjeet [29]) have introduced a triangular fuzzy
set and an intuitionistic fuzzy set to transform the fuzzy DEA/AR model (proposed by Liu and
Chuang [5]) into a linear model, but they are all @-cut based, which must be solved at multiple
a-cut [evels. The need for multiple solutions results in the second limitation, which is high
computational effort demanded due to the lack of a known rule for determining a best step size
for the @-cut]evels. More importantly, earlier research results on the fuzzy DEA/AR model did
not consider the verification of the constraints of assurance regions in the mathematical
programming proofs.

To address the limitations of accuracy and computational efficiency together, a novel fuzzy
DEA/AR model is proposed in this work. The proposed model has the following three unique
features: firstly, it is linear, so it can achieve more accurate efficiency values; secondly, it is
independent of different@-cut Jevels, which minimizes the computational effort; finally, to the
best of our knowledge, this is the first study to add the verification of assurance region
constraints into the mathematical programming proof.

The rest of this paper is organized as follows. Section 2 reviews the fuzzy DEA/AR model
proposed by Liu and Chuang [5], Lai et al. [25] and Sanjeet [29], namely the conventional fuzzy
DEA/AR model, and its aggressive formulation. Section 3 presents our novel fuzzy DEA/AR
model. Section 4 presents a comparative empirical analysis for the proposed model and the
conventional fuzzy DEA/AR model. Section 5 gives the conclusions.

2. CONVENTIONAL FUZZY DEA/AR MODEL

This section briefly reviews the conventional fuzzy DEA/AR model proposed by Liu and
Chuang [5],Lai et al. [25], Sanjeet [29], and their aggressive formulation.
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Consider that there are # DMUs, for which each PMU; (j=1,2,...,n) consumes m inputs
X; (i=12,..,m) to produce s outputs?,;, (7=L2,....s). Suppose the kth DMU assessed is
denoted as PMU, . According to Charnes et al. [3], the conventional DEA model, assuming

constant returns-to-scale, is designed to calculate the efficiency value of DMU; for crisp data.
This can be described as follows:

iurYrk
E, = max !
ZviXik
i=1
>u, (D
<1 \Ji
S.t. ZV[X[J'

where, V;and, , treated as unknown variables, donate the weights for the ith input and the

rth output, respectively, and ¢ is a small non-Archimedean number [3]. Model (1) can be
converted to model (2) by applying the Charnes-Cooper transformation [30]:

S
E, = max ZurYrk
r=1

ivin.k =1
i=1

s.t. Zslu,Yrj — iVinj <0 Vj
r=1 i=l

(2)

u 2£>0 Vr,y,z2e>0 Vi

Nevertheless, model (2) permits each PMU; to choose favorable weights for their inputs and
outputs. The issue encountered with this approach is that there are many cases for which the
input and output weights must be limited to a specific region for the production mechanisms to
work in real world. The AR, proposed by Thompson etal. [18, 19], is used to restrict the weights
in some reasonable regions based on expert opinions. Liu and Chuang [5],Lai et al. [25]and
Sanjeet [29]have all used the following mathematical inequalities to describe the domainsof the
relative importance of the input and output weights:

o

ll([i up UF
,1£p<q:2,3,...,m,W£—SL—Ol£p<q:2,3,...,s. (3)
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L,andVU, denote the relative importance of the pth(1<r<g¢=2.3...m) input elicited from the
experts. While Z;and U, denote the relative importance of the pth(1<r<g¢=23...s ) outpu

1 1 o o
LP U _ UP L L UP

elicited from the experts. To simplify the calculations, let €.=g7,Cn=7,Pu=g0, and Pou=75 .
q q q q

These AR constraints are added into model (2), which results in model (4) as follows:
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S
E, = max ZurYrk

r=1
vaXikzl
Zur R I (4)
S.L.

L U —
Cpqvq_v C Ve Vi< p<g=23,..,m

)3 * _
quuq<u <quuq,‘v’l£p<q—2,3,...,s,
v, =2&>0, i=12,...mu, =¢&>0, r=12,..,s,

Suppose the inputs and outputs of each DMU are not crisp but imprecise. Let X, and

with membership functions #5, and #5, respectively be the ith and rth fuzzy input and output
of DMU,  This results in Model (5)as follows:

Zur " ZV,'X,] <0,;=12,...,n (5)
s.z.
leqvq<v <C;/qvq,V1<p<q:2,3,...,m,

L U _
D,u,<u,<Dju, VI<p<g=23,.,s,

v,2e>0, i=12,....mu, 2g>0, r=12,...,s,

Liu and Chuang [5],Lai et al. [25]have used (¥,).and(¥,)., to represent the a-cuts of X,
and Y, respectively. For x,€X;, v, €Y, (X),and(Y,). can be described as follows:

CARICAFNE AN ]=[n3_jn i, = X,

(xu) o, max {x; eX

Hy () z o]

(y )>a},max{y eY

T).=[ @)L = #y (v,) = adl,

Based on Zadeh’s extension principle [6,7], the upper and lower bounds of the fuzzy
efficiency value E, in (5) at a specific a-cut value, namely (£, and (&), can be calculated

by:

max() u,y,)
r=1
s. t. Zv,.x,k =Li=12,..,m,

U _ s
(). = nax Zury,,/.—ZVJc <0,7=1,2,...,ns (6)

i
iy 7 L U
i) C,,,,V,, <y <Cpqvq,Vl<p<q—2 3,..,m,

Dtu <u, <DUu V1< p<qg=23,..,s,

Pqgq

v,2eu 26,r=1,..s,
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(E) = min . 7
xyexl.] Zuyyrj Zleg <0,j=1,2,..,n, ( )
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] CLv <, <va V< p<qg=23,.,m,
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Pqq rgq’
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Note that the two-level optimization (6) and (7) cannot be calculated directly. From the
results in Liu and Chuang [5], model (6) and (7) can be transformed into model (8) and (9),
respectively.

(B, =max Y u,(Y,),

r=1
DXL =Li=12,..,m,
i=1

(V) = (X, <0
;ur( rk)(l ;vz( lk)ot (8)
St iu,(yrf)i —ivi(Xﬁ)Z <0,j=12m,j #k,

Cpqvq <v <Cq v, V1< p<qg=2.3,.,m,

D u <u, <DYu V1< p<qg=23,..s,

Pq4q Pqq’
v, 2&,u, 2,5 =1,.,s.

(E,); =max > u,(Y,),

r=1
n U .
D vi(X,)8 =Li=12,...m
i=1
Zur(Yrk)i _zvi(Xik)g =
r=1 i=1

.t. S m
° 2, (1) = 20 (X)) <0 =120, = K,
CLv <v, _CUv Vi< p<qg=2.3,.,m

(9)

rq-4q rq-q°
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Vv, 2 E,U,. 26,7 = 1,...,s

The analysis of model (8) and model (9) reveals two drawbacks: they are subject to various
a-cut levels, which leads to high computational requirements; and they are in the non-linear
mathematical programming form because of (X)), , (X,); , %,); and (%,); , so the accuracy of
theefficiency values calculated is poor.

3. THE NOVEL FUZZY DEA/AR MODELFORMULATION

To solve the above drawbacks (high computation requirements and poor accuracy), a novel
fuzzy DEA/AR model is proposed in this section.

For the poor accuracy performance of the fuzzy efficiency values, up to now, only Sanjeet [29]
introduced intuitionistic fuzzy set theory to transform the non-linear mathematical
programming form of model (8) and (9) into a linear form. However, this method needs a pre-
set probability distribution, which is impossible in many cases. In this work, a triangular fuzzy
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number for characterizing fuzzy variables in model (8) and (9) is introduced. The reason we
use a triangular fuzzy number is its simplicity in computation and its ease of extension to other
fuzzy numbers. Therefore, we have Definition3.1 as follows:

Definition3.1[31]: Consider a fuzzy set 4 of Z, a triangular fuzzy number (TrFN) can be
denoted as 4={/'"/".I'} , where' <<, I'and 7*are called the lower and upper limits of
respectively, 7?is called the most likely value of 4, When!'=/*=I, 42 becomes a crisp variable.
v ze 4, The membership function of 4, represented by #:(?) , can be described as follows:

0 z<!l' or zz=P
z-1I
(=1 T, l'sz<r?
37
113 122 P<z<pP

The «a-cuts of the triangular fuzzy numbers are needed, so we have Definition3.2 as follows:
Definition3.2 [32]: The a-cut of the fuzzy set 4, which is referred as «-cutlevel (as shown
in Figure1), is defined as 4,: 4. = {du (2.2 4} where @ €[0,1].

Ma pPoal P oz

Figure 1. @-cut]evel of the fuzzy set 4

For a TrFN 4={I'"".F'} and e €[0,1], the confidence interval can be denoted as follows [32]:

A= AL AL =1+ a@ =1 —a® -1 ],

Based on Definition 3.1, the fuzzy inputs X, and outputs Y. in models (8) and (9) can be
denoted by triangular fuzzy numbers as:

Xy=0ryx5.%.), Y20, 3,3,

Based on Definition 3.2, Using a specific a-cutlevel for X, and?Y,;, the lower-bounds (i.e.,

(X,)z,(Y,). ) and upper-bounds (ie., (X;)- ,(¥,), ) of their membership functions can be
calculated as follows:

(Xii)i :x;]. +05,-(xi,2- —x;),ai €[0,1] (10)
(X,). =x;—ai(x;—x;)’ai €[0,1] (11)
(Y,); =y, +a,(v;—y,), e €[0,1] (12)
(Y =y —a. (v, = yy), @ €[0.1] (13)
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3.1.Upper bounds of the DMUs’ fuzzy efficiency values

Asmodel (8) is a non-linear mathematical programming model, we replace Eq. (10)-(13) in
model (8) and construct model (14) as follows:

(Ek)Z = max zur(yfk -a, (yik - yrzk )
r=1

Zvi(x;k +a,(x; —xy)=Li=12,.,m,

i=1

2, (7 = (% = ¥ 2w+ a6~ ) <0, (14)

St L . .
Zur(y;. +ar(yf/. —yl/))—Zvi(x; —a,.(x;. —x;)) <0,j=12,...n,j#k,
r=1 i=1

Cov,<v, <Chv V1< p<q=23,...m,

Pqq rq-q°

D:u <u, <D%u Vi<p<qg=23,..s,

rqq pqq’
v,z2eu 2¢e,r=1,.s.

Itis evident that model (14) is linear, which can greatly improve the accuracy performance of
efficiency values. However model (14) is still subject to various «a-cutlevels, so the problem of
the high computational demands remains. To solve this shortcoming, we replace variables
A =ay,i=1..m where 0<A <v,and 7, =a.u,, r=1..s, where 0=<7, <u, . This results in
the construction of model (15) as follows:

(Ek)g = maxz(ury:‘k _nr(yfk _yrzk)

r=1

Z(vixl.'k + ﬂi(xi —xl.lk)) =1i=12,...m
i=1

Z(uryfk -1, (yrsk - yrzk )~ Z(Vixilk + /11' (xii - xi]k N<0
(15)

S.t. Z‘Y Z’" . .
(uryl/+77,(yrz,_y1,))_ (Vix;_}‘i(x;_x;))goaj=132a"'7n9]ik’
r=1 i=1

L U _
C,v,sv,<C v Vi<p<g=23,...m,

Dfu <u, <Dy Vi< p<q=2,3,..,s,

Pq4q rq4q°
v,2eu 26,r=1,..,50<1<v,0<57 <u,

Obviously, model (15) is independent of various «a-cutlevels and there is no need for a pre-
determined step-size, so it can dramatically reduce the computation efforts. Also, model (15) is
a one-stage linear optimization model. If it always has a feasible and bounded solution, we can
find the upper bounds of the DMUs’ efficiency values under the assurance regions. This is given
as Theorem1. Former research on the conventional fuzzy DEA/AR model has not included the
verification of assurance region constraints in their proofs; this work addresses the omission as
follows.

Theorem 1: Model (15) is always feasible and bounded.

Proof: In this paper, we substitute the assurance region constraints in model (15) with the
matrix forms: Cv<0and Du <0 .Then, the dual form of model (15) can be written as follows:
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@ =min[f — E(Zmls, + isr)]

i=1 r=1

S+ Zé‘/yz""WD(k) —8, =P, 2V
=
é‘k(yrzk 7y§k)+25j(yfj 7y;1j)+TD(j) -7.tp, 2 yrzlc -
=

Jzk

0-35)x. 7Z5jx;+.9qk) —s,— g 20, (16)
<

J#k

s.t.

n
21 2 1 3 2
O(x;, = x;) = 8,0, = x,)T2,68,(x; = x))+yC, — K, + 9,20,
i1
Jj#k

6,20,@,7,9,y 20,
s,p. 20,r=12,.,s;

s,0,20,i=12,..m, 0 free.

Suppose a specific solution for model (16) is described as formula (17):

5/.=0,j =1,2,....n;,] # k;
o, =l;o=r=9=y=0;
' (17)

»

s, =p, 20,}” =1,2,...S;
s, =0, =0,i=1,2,...,m0=1.

Firstly, it is evident that this solution satisfies all of the constraints of model
(16);consequently, model (16) is always feasible. Secondly, it is obviously independent of
different @-cut levels. Finally, in the feasible solution shown in formula (17), #=1and the slack

variables (s, =s;=0) are equal to zero. Hence, the optimum value of model (16) isw <1, so
model (16) is bounded.

Furthermore, based on the duality theorem in linear programming, the optimal values of
model (16) and (15) are equal (i.e. ®'=(£,)" <1), and the solution above is also a feasible

solution to model (15).Hence, we have that model (15) is also feasible and bounded. This
completes the proof.

3.1.Lower bounds of the DMUs' fuzzy efficiency values

As model (9) is also a non-linear mathematical programming model, we replace Eq. (10)-
(13) in model (9) and construct model (18) as follows:

(B, = maxzur(y:k +a, (Vi = yi)

=1
Zv,(xfk —a,(x;, —x;)=1, i=12,..,m,
i1

Su (v o, (i — v = 2 v — (g, —x3)) <0,

r=1 i=l (18)
e u

w0 e (0~ ) = vl e (=X <0, =1.2,en, £ K,

r=1 i=1

L U —
Cpqvq <v, < Cpqvq,VI <p<g=223,..,m,

L U —
quuq <u,< quuq,VI <p<qg=23,.,s,

v,zeu, ze,r=1,., S.

Although model (18) is linear; it is still subject to various @-cut levels. Similar to the procedure
in Section 3.1, a variable exchange is conducted to solve this issue. We replace 4 = &,v; where
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0<4 <v,and 7, =cu, where0=<7, <u, in model (18). Then, model (18) can be written as
model (19):

(E), = maXZ(%Yﬁk +1,(V = Vi)
r=1
Z(v,xfk -4 —xn=1 i=12,..,m,

i=1

1,3l 7, — Y = S v — A —x2) <0;
2 8 2 (19)

Dy =1,y =y = 2+ A0 =) <0,/ =1,2,..,m5 ) # k;
r=1 i=1

3 U _
Cpqvq <y, < Cpqvq,VlS p<q=273,..,m,

Dyu,<u,<D)u V1<p<q=23,.,s,

pqq rqq°
v,zeu, z¢er=1..s, 0<A4<v,0<n <u,

S.t.

It is evident that model (19) is a linear programming optimization model, and more
importantly, it is independent of various «a-cut levels. If it always has feasible and bounded
solutions, then we can find more accurate solutions for the lower-bounds of the DMUs’
efficiency values under the assurance regions. This is given as Theorem 2.

Theorem 2: Model (19) is always feasible and bounded.

Proof: As we mentioned above, former research on the fuzzy DEA/AR model always omitted
the verification of assurance region constraints in their proof. Here, we substitute the assurance
region constraints in model (19) with Cv<0, Du <0, then we define the dual form of model (19)
as follows:

7 =min[0" — E(i“si’ + Zs: )]
i=1 =1

G+ _Z¢./y3f+wD(k) =S, =P Z Yy
o
B — i)+ Z@(J’rzj — Y TTDG, =Y P Z Vi~ Yy
Tk
(0= )xs = 28,5, 79Cu, =57 =9, 20, (20)
j=1
s.t. j‘:k
g(xi _xﬁc)+¢k(xfk —x,.i) —Z@(x; _xf]/)”_‘/’c(,) —K,+¢@, =0,
B
$,20,0,j=12,...n,j #k,
sL,p.=20,r=12,.,s,
7,9y =0
s, .0, 20,i=1,2,...,m;0" fiee.

i

Suppose a specific solution for model (20) is described as formula (21):

¢]:09] = 1525"'sn;j * k;
$=1;0=1=9=y=0;

st=p,=0,r=12,..; (21)

s, =0 =0,i=12,.,m0" =1.

Firstly, the solution shown in formula (21) is feasible as it meets every constraint of model
(20), so model (20) has feasible solution. Secondly, it is obviously independent of different
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a-cut levels. Finally, in the feasible solution shown in formula (21), 6" =1 and the slack
variables are equal to zero (s; =s; =0). Consequently, the optimum value of the objective
function of model (20) is7" <1, so model (20) is bounded.

Similar to the procedure in Section 3.1, based on the duality theorem in linear programming,
the optimal values of model (20) and (19) are the same (i.e., T"=(£,): <1). Also the solution

above is a feasible solution to model (19). So we have that model (19) is also feasible and
bounded. This completes the proof.

From Theorem 1 and Theorem 2, model (15) and model (19) are both linear and independent
of differenta-cut levels. In addition, they both have bounded and feasible solutions. Hence, by
solving model (15) and model (19), we can obtain more accurate solutions, which provide
reduced distances between the upper and lower bounds of the DMUs’ fuzzy efficiency values,
with less computation work.

4. AN EMPIRICAL STUDY

In this section, we provide a comparative empirical study to verify and demonstrate the
practical application of the novel fuzzy DEA/AR model. The data used in the study is from
University library collections; such collections have been used in related work. The empirical
analysis for this research consists of four main parts. Firstly, variables for the novel model are
selected, along with the university library samples. Secondly, the novel fuzzy DEA/AR model is
applied to the university libraries’ data collections. In the third and fourth parts, comparisons
of the novel model and the conventional model are made to demonstrate the computational and
accuracy improvements.

4.1. Variables and sample selection

In determining the indicator variables to be used, approaches used in the literature to analyze
the inputs and outputs for efficiency value estimations in university library systems are
considered (Liu and Chuang [5], Simon et al. [33],Guccio et al. [34]). The previous studies
highlighted a set of input and output variables related to funds, university library collections,
building areas, and services. In choosing which of these variables to adopt, consideration is
given to the availability of data, financial support for the university libraries, plus the input-
outputlogic relationships in library efficiency estimations. Therefore, a set of one input and four
output indicator variables are chosen based on these criteria, the only input in the variable set
is “Funds”:

Funds _funds allocated by the university in thousands of pounds.

The outputs in the variable set are:

® Number of Collections _ the numbers of books, serials, and database in the university
library. Size of Building

® Space_the building space in square meters of the university library.
® Number of Personnel _the number of staff and student volunteers in the university library.
® Readers’ Satisfaction _readers’ satisfaction for the university library.

The second stage is to choose a sample of university libraries to analyze. Firstly, we determine
the number of DMUs to use, namely the limit sample size. For a DEA model to be effective, Ali et
al. [35] emphasized that the total number of DMUs must exceed twice the sum of the input and
output variables. So, the limit set in this study is 10 DMUs. Secondly, the sample university
libraries must be similar in nature and operation [33]. In determining the sample, we focus on
the China’s comprehensive list of the “985” universities project, in which the university libraries
have similar nature and operation. For this study, we select 12 DMUs based on these criteria.
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The third stage accomplishes the data collection. “Funds”, “Number of Collections”, “Siz
e of Building Space”, and “Number of Personnel” are crisp values, which are acquired
from the university libraries’ 2018 annual audit reports. The data of “Readers’ Satisfac
tion” are vague and described by triangular fuzzy numbers. Their values are obtained
from the investigation of the university teachers and students using fuzzy linguistic ter
ms, such as “Very Good”, “Good”, “Average”, “Poor”, and “Very Poor”; their membership
functions are described in Figure2. The crisp variables “Funds”, “Number of Collection

» o«

s”, “Size of Building Space”

and “Number of Personnel” can be regarded as degenerated triangular fuzzy numbers.
In the process of acquiring these data collection, we met with the management team
of each university library separately. After discussions, the management teams provide
d the data. After a series of modification, all of the management team members of th
e twelve university libraries approved the data as show in Table 1.

—_

H(x)

Very poor, Poor Average Good Very good

0 1 2 3 4 5 6

Figure 2. Fuzzy membership functions for Readers’ Satisfaction

Table 1. Data for the twelve university libraries

. . Input Outputs
University Funds
library Number of Size of Building Number of Readers’
(thousands of . : :
Collections Space (m2) Personnel Satisfaction
pounds)

1 78 850000 9012 357 (3,4,5)
2 88 754000 8557 284 (2,34)
3 64 582460 5783 335 (34,5)
4 82 762800 8200 348 (34,5)
5 48 413500 6746 273 (2,3,4)
6 83 658000 6520 350 (2,34)
7 62 475000 7426 315 (2,3,4)
8 55 558000 8985 246 (3,4,5)
9 41 365000 8650 305 (34,5
10 38 354300 4025 322 (34,5)
11 52 312700 5463 276 (34,5)
12 70 543600 6240 288 (2,34)

Finally, we determine the relative importance of inputs and outputs. After several
brainstorming sessions with the curators of the twelve university libraries, the relative
importance of “Number of Collections”, “Size of Building Space”, “Number of Personnel” and
“Readers’ Satisfaction” are evaluated as: u €[0.12,0.43] = u, €[0.19,0.38] | u, €[0.15,0.31] |
u, €[0.25,0.41], so the assurance regions generated from the relative importance of the outputs
can be expressed as:

0.12 _u, 043 0.12 _u, _043 0.12 _w, _043 019 _u, _038 019 _u, _038 015 _u, _031

038 u, 0.19 031 u, 015 041 u, 025 031 u, 015 041 wu, 025 041 u, 025
, :

) J ) )
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Notice that there is only one input variable, so no assurance region is requested for the input
variable.
4.2. Results of the empirical analysis

We use model (15) and (19), which are coded by LINGO11.0, to evaluate the upper and lower
bounds of the twelve university libraries’ fuzzy efficiency values (i.e.,U and L), and the results
are summarized in the last column of Table 2. For a comparison of the novel fuzzy DEA/AR
model proposed in this paper and the conventional fuzzy DEA/AR model proposed by [5],[25]
and [29], we employ the conventional fuzzy DEA/AR model to calculate the upper and lower
bounds of the twelve university libraries’ efficiency values (i.e.,,U and L) under different -cut
levels. These results are listed in columns 3-13 in Table 2.

According to Liu and Chuang [5], column 3 (when @ =0) shows the range, determined by the
upper and lower bound of the fuzzy efficiency value, in which the efficiency value is definitely
going to appear. As the eleven distinct a-cut levels increase step-by-step from 0.0 to 1.0, the
distances between the upper-bounds and the lower-bounds of the efficiency value decrease.
When a =1, the upper-bound efficiency values are equal to the lower-bound efficiency values,
the fuzzy efficiency becomes a crisp value. This is called the DMUs’ most likely efficiency value
by Liu and Chuang [5]. There is no doubt that this crisp value is an ideal value. The closer the
upper and lower bounds of the fuzzy efficiency value are to this ideal value, the higher the
accuracy of the efficiency value. The results reveal exceptions, such as DMU5 and DMU9, which
reach the most likely efficiency values in advance at a=0.7and a=0.5, respectively. So, when
a pre-determined best step size for the a-cutlevels is absent, the efficiency values at a=0.7
are called the relatively effective fuzzy efficiency values in [5]. Obviously, compared to the most
likely efficiency values, the relatively effective efficiency values are more practical, so these are
regarded as the final efficiency values by former research.

As an example, the efficiency value for DMU6 cannot exceed 0.9629 or fall below 0.4351
(when @ =0). The distances between the upper-bound and the lower-bound decrease as the
a-cut Jevel increases from 0.0 to 1.0. When & =1, the upper-bound and the lower-bound are
all 0.7238, which is called the most likely efficiency value.

Table 2. Comparison of the results between the conventional and novel fuzzy
DEA/ARmodels

The conventional fuzzy DEA/AR model

university library

(DMU) Different %~CUl jeyels The novel fuzzy DEA/AR model
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1 L 1 1 1 1 1 1 1 1 1 1 1 1
0] 1 1 1 1 1 1 1 1 1 1 1 1
2 L 0.4874 0.5168 0.5347 0.5693 0.5816 0.6053 0.6482 0.6746 0.7038 0.7319 0.7517 0.7409
U 0.9836 0.9632 0.9415 0.9227 0.8934 0.8729 0.8482 0.8162 0.7928 0.7758 0.7517 0.7628
3 L 0.7543 0.7937 0.8124 0.8338 0.8524 0.8797 0.8905 0.9157 0.9341 0.9341 0.9341 0.9288
U 1 1 1 1 1 0.9913 0.9716 0.9562 0.9341 0.9341 0.9341 0.9411
4 L 1 1 1 1 1 1 1 1 1 1 1 1
U 1 1 1 1 1 1 1 1 1 1 1 1
5 L 0.7986 0.8234 0.8532 0.8816 0.9184 0.9536 0.9824 1 1 1 1 1
U 1 1 1 1 1 1 1 1 1 1 1 1
6 L 0.4351 0.4634 0.4927 0.5272 0.5561 0.5822 0.6105 0.6428 0.6754 0.6903 0.7238 0.7106
0] 0.9629 0.9427 0.9251 0.9014 0.8891 0.8533 0.8364 0.7981 0.7732 0.7524 0.7238 0.7432
7 L 0.5287 0.5564 0.5831 0.6122 0.6421 0.6708 0.6944 0.7218 0.7532 0.7804 0.8213 0.8029
U 0.9944 0.9956 0.9987 0.9821 0.9634 0.9425 0.9218 0.8907 0.8733 0.8529 0.8213 0.8435
8 L 1 1 1 1 1 1 1 1 1 1 1 1
U 1 1 1 1 1 1 1 1 1 1 1 1
9 L 0.8734 0.9022 0.9233 0.9512 0.9855 1 1 1 1 1 1 1
0] 1 1 1 1 1 1 1 1 1 1 1 1
10 L 0.5037 0.5319 0.5537 0.5804 0.6028 0.6351 0.6684 0.6915 0.7268 0.7528 0.7832 0.7621
U 0.9952 0.9968 0.9946 0.9687 0.9358 0.9139 0.8974 0.8733 0.8545 0.8264 0.7832 0.8026
1 L 0.6273 0.6418 0.6624 0.6806 0.6943 0.7094 0.7287 0.7564 0.7728 0.7964 0.8168 0.8075
U 0.9967 0.9862 0.9618 0.9487 0.9322 0.9145 0.8901 0.8732 0.8564 0.8387 0.8168 0.8433
12 L 0.5316 0.5674 0.5967 0.6288 0.6543 0.6824 0.7108 0.7431 0.7655 0.7933 0.8364 0.8152
U 0.9961 0.9959 0.9954 0.9971 0.9982 0.9744 0.9536 0.9264 0.8952 0.8731 0.8364 0.8529
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L: lower bound of the fuzzy efficiency value; U: upper bound of the fuzzy efficiency value.
4.3. Computational improvements

Based on the results of Table 2 and the above explanation, we compare the computational
demands of the two models.

For the conventional fuzzy DEA/AR model, in order to determine the relatively effective fuzzy
efficiency value, eleven computations are needed at the distinct ¢ -cut Jeyels (0.0,0.1,0.2, ..., 1)
for every DMU. In our empirical example, there are twelve DMUs, so we have to compute 132
times, and then compare the different fuzzy efficiency values to find the relatively effective fuzzy
efficiency value, which leads to substantial computational demands.

For the novel fuzzy DEA/AR model, the upper and lower bounds of the fuzzy efficiency values,
shown in the last column of Table 2, are independent of different a-cut values. The proposed
model doesn’t need to compute the DMUs’ fuzzy efficiency values at different ca-cut Jevels and
endeavor to find the relatively effective fuzzy efficiency value. This model only needs 12
computations in our empirical example. This is a 90.9% reduction of the calculation work in
comparison with the 132 computations needed in the conventional model. This justifies that
our novel fuzzy DEA/AR model reduces the computational demands.

4.4. Accuracy improvements

Based on the results of Table 2 and the explanation in Section 4.2, we demonstrate the
accuracy improvement of our novel model.

According to Liu and Chuang [5], the closer the upper-bound and lower-bound of the fuzzy
efficiency values are to the ideal value (when ¢ = 1 ), the higher the accuracy of the efficiency
value calculated. In order to compare the accuracy, we compare the distances the upper and

lower bounds of the fuzzy efficiency values calculated by the two models to the ideal values.
These results are illustrated in Figure3, based on the data in Table2.

(" 14 r1

0.95 - - 095
0.9 - 09
0.85 - - 0.85
0.8 - “los
0.75 - 075

0.7 r 0.7

0.65 - r 0.65

0.6 T T T T T T 0.6

2 3 6 7 10 11 12
- J

Figure 3. The comparison between the distances determined by the upper and lower
bounds of the DMUs’ fuzzy efficiency values calculated by the two models

The lower-bounds (i.e., L) and upper-bounds (i.e., U) of every DMU’s relatively effective fuzzy
efficiency value in Column 10 (when ¢ = 0.7 ) of Table 2 are represented graphically the bottom
and the top of the black cylinder in Figure 3. The lower-bounds (i.e., L) and the upper-bounds
(i.e., U) of every DMU'’s fuzzy efficiency value in Column 14 (novel DEA/AR model) of Table 2
are represented graphically the bottom and the top of the cylinder with the slanted line fill
pattern in Figure 3.Column 13 reports the most likely efficiency value, which is represented
graphically as the black curve in Figure 3.

From Figure 3, we find that the cylinder with the slanted line fill pattern is obviously shorter
than the black cylinder. The top and bottom of these cylinders, determined by the upper and
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lower bounds of the fuzzy efficiency values in the last column of Table 2 (calculated by the novel
fuzzy DEA/AR model), are obviously closer to the most likely efficiency value shown as the black
curve in Figure 3, than the top and bottom of the black cylinder determined by the upper and
lower bounds of the relatively effective fuzzy efficiency values (calculated by the conventional
model in column 10). This means the bounds of the fuzzy efficiency values calculated by the
novel DEA/AR model are closer to the ideal efficiency value (when ¢ =1), and it justifies that
the novel DEA/AR model can get accurate improvements.

5. CONCLUSIONS

The conventional fuzzy DEA/AR model has been widely applied in calculating the fuzzy
efficiency values of DMUs with vague inputs and outputs. However, the conventional fuzzy
DEA/AR model has two limitations: it depends on different #-°4t variables, which leads to high
computational demands; and it generates lower accuracy efficiency values owing to its
nonlinear characteristic. To address these limitations, a novel fuzzy DEA/AR model is
introduced in this work to assess the efficiency values of DMUs with fuzzy inputs and outputs.
This improved model has three unique features:(1) it is independent of different &-cut
variables and doesn’t need a pre-set step size, which reduces the computation efforts; (2) it is
linear and demonstrates an accuracy improvement; (3) We add the verification of assurance
region constraints in the proof of Theorem 1 and Theorem 2, which have not been considered
in the literature. The empirical study of twelve university libraries is employed to demonstrate
the features and the application of this novel fuzzy DEA/AR model. Based on this novel model,
we plan to investigate the sorting of fuzzy efficiency values in the future.
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