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Abstract	

This	paper	presents	a	collocation	method	 for	solving	 two‐dimensional	 linear	volterra	
fredholm	integral	equation	based	on	boubaker	polynomials.	The	main	characteristic	of	
this	 method	 is	 that	 it	 is	 simple	 and	 convenient	 to	 calculate,	 and	 easy	 to	 obtain	
approximate	 solutions.	 The	main	 idea	 of	 this	method	 is	 to	 simplify	 the	 solution	 of	
integral	 equation	 to	 the	 solution	 of	 algebraic	 equation,	 and	 discuss	 the	 existence,	
uniqueness	 and	 convergence	 analysis	 of	 the	 solution	 of	 this	 method.	 Finally,	 the	
feasibility	 and	 effectiveness	 of	 this	 method	 were	 demonstrated	 through	 numerical	
examples.	
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1. INTRODUCTION	

Integral equation has a long history, and many problems such as mathematical physics can 
be expressed by integral equation. Due to the different problems, different forms of integral 
equation will appear. Such as integro differential equations, partial differential integral equation, 
integral equation and mixed integral equation. In the fields of biology[1] and mechanics[2], 
integral equation is used to establish the model and solve it. In this paper, the two-dimensional 
mixed linear volterra-fredholm integral equation is considered: 
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a
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where ),( tsf , ),( ysk , ),( xtq are known kernel functions and 1 , 2 are nonnegative number. 
),( tsg  is the function to be solved on ],[],[ caca  . 

Due to the development of the times, a single integral equation can not satisfy more complex 
models. So many scholars turn their attention to the mixed integral equation. The mixed integral 
equation includes volterra integral and fredholm integral. for a single volterra integral and 
fredholm integral, the complexity of solving the mixed integral equation increases. How to solve 
the approximate solution of mixed integral equation is the focus of current research. 

The numerical methods commonly used to solve volterra-fredholm integral equation include 
collocation method[3-11], decomposition method[12-14], approximation method[15-17]and iterative 
method[18-19]. For the approximation method, its numerical results are quite good, and the error 
gradually decreases as the number of iterations increases. This method can also be applied to 
other types of integral equation and integral equation with more complex kernels. The 
characteristic of the decomposition method is that the obtained solution is in the form of a 
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series, which has good convergence and is easy to calculate. Compared with the previous 
methods, the advantage of the collocation method is that it can quickly, conveniently and 
effectively find the approximate solution of the integral equation. 

Collocation method is a commonly used numerical method, which is flexible and can solve 
mixed integral equation according to different polynomials. Therefore, it has important 
practical significance in solving the approximate solution of mixed integral equation. 

The organizational structure of this article is as follows: Section 2 introduces the boubaker 
polynomial. Section 3 introduces the boubaker polynomial collocation method, Section 4 
provides an analysis of the existence, uniqueness, and convergence of the solution, and Section 
5 provides numerical examples to demonstrate the feasibility and effectiveness of this method. 
Finally, a brief summary is provided in Section 6. 

2. PRELIMINARIES	

The standard boubaker polynomial )(xBi , for Ni ,...,1,0 are defined[20], as 

1)(0 xB , 

xxB )(1 , 

2)( 2
2  xxB , 

� 
)()()( 21 xBxxBxB NNN   , 2N  

where N  is nonnegative number. 

3. DESCRIPTION	OF	THE	METHOD	

In this section, the approximate solution of the two-dimensional linear volterra-fredholm 
integral equation is solved by using the boubaker polynomial collocation method. Expand the 
unknown function of equation (1) into a boubaker polynomial series with finite terms: 
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where ),( tsB  and D  are 1)1)(1(  MN  matrix, the ),( tsB  form as follow  

)],(),...,,(),...,,(),...,,(),,(),...,,([),( )1)(1(1)1()1(221)1(111 tsbtsbtsbtsbtsbtsbtsB MNNMM  , 

Where )()(),( tBsBtsb mnnm  , 1,...,2,1  Nn , 1,...,2,1  Mm . 

The D  form as follow T
MNNMM ddddddD ],...,,...,,...,,,...,[ )1)(1(1)1()1(221)1(111  , 

where nmd  , 1,...,2,1  Nn  , 1,...,2,1  Mm  are the unknown boubaker polynomials 
coefficients. N  and M  are nonnegative number. 

For the solution of Eq.(1),substitute ),( tsgnm  into the Eq.(1) to get 
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Convert Eq.(3) into the matrix form 
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 Next, choose nodes as collocation points ),( ji ts  , 1,...,2,1  Ni  , 1,...,2,1  Mj  . 

substitute it into Eq.(4) to get 
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For the above Eq.(5), rewrite it 
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By solving algebraic Eq.(5) we can get the vector $D$. Approximate the solution of Eq.(1) with 
substitutiong D  in Eq.(2).    
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4. UNIQUENESS	AND	CONVERGENCE	ANALYSIS	
In this section, we use the following theorem to consider the uniqueness and convergence 

analysis of the above method: 

Theorem1: ),( tsg   is the exact solution of eq.(1) of the integral equation, ),( tsgnm   is the 
approximate solution of eq.(1) of the integral equation. There exists a constant   that satisfies 
the condition of 10  , therefore, the solution of equation (1) exists and is unique. 

Proof: Firstly, use the method of proof to prove the uniqueness of the solution to eq.(1), 
assuming ),( tsgnm  and ),(~ tsgnm  are solutions to eq.(1): 
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Because 1))(( 21  acQK   , and mn,  , 0),(~),(  tsgtsg nmnm  ,the solution to 

equation (1) exists and is unique. 

Theorem2: ),( tsg   is the exact solution of eq.(1) of the integral equation, ),( tsgnm   is the 
approximate solution of eq.(1) of the integral equation. There exists a constant   that satisfies 
the condition of 10   , so that the solution to eq.(1) is convergent. 

Proof: prove the convergence of eq.(1). According to the definition of norm, there are 
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The convergence proof has been completed. 
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5. NUMERICAL	EXPERIMENTS	
This section gives several examples of two-dimensional linear volterra-fredholm integral 

equation. To illustrate the feasibility and rationality of this method, we believe that the absolute 
error between the exact solution and the existing solution is defined as 

),(),( tsgtsgerroe nm  , ),( ts  , where ),( tsgnm   and ),( tsg   are approximate solution 

and exact solution respectively. 

5.1. Example1	

Consider the two-dimensional linear volterra-fredholm integral equation in the form of eq.(1) 
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Table	1.	Results for example1 with n=m=3,4,5 

(s,t)	
exact  

solution	
n=m=3	

approximate solution	
n=m=4	

approximate solution	
n=m=5	

approximate solution	
(0,0) 0 0 0 -3.039790641423679e-12 

(0.1,0.1) 0.0101 2.199800000000023e-02 1.010000000000021e-02 1.009999999696148e-02 
(0.2,0.2) 0.0416 5.155200000000013e-02 4.159999999999983e-02 4.159999999697339e-02 
(0.3,0.3) 0.0981 1.006620000000000e-01 9.810000000000024e-02 9.809999999701999e-02 
(0.4,0.4) 0.1856 1.813279999999997e-01 1.855999999999999e-01 1.855999999971414e-01 
(0.5,0.5) 0.3125 3.055499999999998e-01 0.3.125 3.124999999973938e-01 
(0.6,0.6) 0.4896 4.853280000000000e-01 4.896000000000000e-01 4.895999999978499e-01 
(0.7,0.7) 0.7301 7.326620000000003e-01 7.301000000000001e-01 7.300999999985969e-01 
(0.8,0.8) 1.0496 1.059552000000000e+00 1.0496 1.049599999999740e+00 
(0.9,0.9) 1.4661 1.477998000000000e+00 1.466100000000000e+00 1.466100000001400e+00 

	

Table	2.	Error for example1 with n=m=3,4,5 

(s,t)	 n=m=3	 n=m=4	 n=m=5	
(0,0) 0 0 3.039790641423679e-12 

(0.1,0.1) 1.189800000000023e-02 2.116362640691705e-16 3.038517354392312e-12 
(0.2,0.2) 9.952000000000120e-03 1.734723475976807e-16 3.026613681900159e-12 
(0.3,0.3) 2.561999999999939e-03 2.081668171172169e-16 2.980046764911037e-12 
(0.4,0.4) 4.272000000000331e-03 1.665334536937735e-16 2.858657754956084e-12 
(0.5,0.5) 6.950000000000234e-03 0 2.606193039156324e-12 
(0.6,0.6) 4.272000000000165e-03 1.110223024625157e-16 2.150279954094003e-12 
(0.7,0.7) 2.562000000000064e-03 1.110223024625157e-16 1.403321903126198e-12 

(0.8,0.8) 9.952000000000183e-03 0 
2.600142323672117e-13 

 
(0.9,0.9) 1.189799999999974e-02 2.220446049250313e-16 1.399769189447397e-12 

5.2. Example2	

Solving two-dimensional linear volterra-fredholm integral equation in the form of eq.(1) 
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Where 4
74

34
),( st

sts
tsf   , syysk ),(  , 2),( xxtq   , 0a  , 1c  , 121    ,the exact 

solution is 4),( sttsg  . 

 

Table	3. Results for example2 with n=m=3,4,5 

(s,t)	
exact 

solution	
n=m=3	

approximate solution	 n=m=4	 n=m=5	

(0.1,0.1) 0 2.550452000000000e-01 1.000000000001000e-05 9.999997957699236e-06 
(0.2,0.2) 0.00032 4.848256000000000e-01 3.199999999999870e-04 3.199999959153654e-04 
(0.3,0.3) 0.0024 6.884784000000002e-01 2.430000000000043e-03 2.429999993873166e-03 
(0.4,0.4) 0.0102 8.699408000000001e-01 1.024000000000003e-02 1.023999999183078e-02 
(0.5,0.5) 0.0313 1.037950000000000e+00 3.125000000000000e-02 3.124999998978850e-02 
(0.6,0.6) 0.0778 1.206043200000000e+00 7.776000000000005e-02 7.775999998774630e-02 
(0.7,0.7) 0.1681 1.392557600000000e+00 1.680699999999999e-01 1.680699999857038e-01 
(0.8,0.8) 0.3277 1.620630400000000e+00 3.276800000000002e-01 3.276799999836617e-01 
(0.9,0.9) 0.5905 1.918198800000000e+00 5.904900000000002e-01 5.904899999816196e-01 
(1,1) 1 2.318000000000000e+00 1.000000000000000e+00 9.999999999795770e-01 

	

Table	4.	Error for example2 with n=m=3,4,5 

(s,t)	 n=m=3	 n=m=4	 n=m=5	
(0.1,0.1) 2.550352000000000e-01 9.998376909389761e-18 2.042300766572297e-12 
(0.2,0.2) 4.845056000000000e-01 1.311884628707460e-17 4.084634648744701e-12 
(0.3,0.3) 6.860484000000001e-01 4.163336342344337e-17 6.126835150332965e-12 
(0.4,0.4) 8.597008000000000e-01 2.428612866367530e-17 8.169218773668163e-12 
(0.5,0.5) 1.006700000000000e+00 0 1.021149831359480e-11 
(0.6,0.6) 1.128283200000000e+00 0 1.225375356739278e-11 
(0.7,0.7) 1.224487600000000e+00 1.387778780781446e-16 1.429625862137129e-11 
(0.8,0.8) 1.292950400000000e+00 1.110223024625157e-16 1.633837509729119e-11 
(0.9,0.9) 1.327708800000000e+00 0 1.838063035108917e-11 
(1,1) 1.318000000000000e+00 0 2.042299662718960e-11 

6. CONCLUDING	

In this paper, we propose a boubaker polynomial collocation method for solving two-
dimensional linear mixed integral equation. The feasibility and effectiveness of this method 
were verified through numerical examples. In the analysis of the example results in Section 5, it 
was found that when the exact solution appears in the form of a polynomial, the approximate 
solution obtained using the method proposed in this paper performs better. And when the 
values of n ,m are large, the approximate solution obtained using this method is better than the 
approximate solution obtained by taking smaller values of n  , m  . However, if the obtained 
approximate solution is close enough to the exact solution, even if the value of n , m increases, 
its effect will not change significantly, and sometimes it may even weaken. However, by 
comparing the errors, suitable values of n  , m  can be found in order to obtain the best 
approximate solution.  
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