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Abstract

In this paper, a hybrid method for solving nonlinear fuzzy Volterra integro-differential
equations with degenerate kernel is introduced. The proposed method combines
Laplace transform with Adomian Decomposition Method, which is abbreviated as LADM.
The nonlinear fuzzy Volterra integro-differential equation is converted into two crisp
integral equations by using fuzzy numbers in the form of parameters. Then the Laplace
transform is used to process the differential part of the equation, and the nonlinear part
is dealed with the Adomian Decomposition Method. The numerical solution of the
equation is obtained. Some examples are illustrated to the robustness, efficiency and the
applicability of the proposed method.
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1. INTRODUCTION

Fuzzy integro-differential equations provides the universality of uncertainty or ambiguity for
mathematical modeling of real-world problems. The study of fuzzy integro-differential
equations is of more interest and fast growing, especially in fuzzy control, which has been
developedrecently. The concepts of fuzzy sets and arithmetic operations were proposed by
Zadeh [1, 2] and further enriched by Tsumoto and Tanaka [3]. Later, Dubois and Prade [4]
introduced the concept of left and right (LR) fuzzy numbers and gave formulas for calculating
fuzzy number operations. Puri and Ralescu [29] proposed two definitions for fuzzy derivative
of fuzzy functions. Kaleva [30] solved fuzzy differential equations based on h-difference. The
concept of integration of fuzzy functions was first introduced by Dubois and Prade [5]. Wu and
Ma [28] were the first proposers of fuzzy integral applications, in which they mainly studied the
second type of fuzzy Fredholm integral equations. Friedman and Ma [31] proposed an
embedding method to solve the fuzzy Volterra and Fredholm integral equations. Babolian and
Sadeghi [32] used Adomian method to solve the second kind of Fredholm fuzzy linear integral
equation. Attari and Yazdani [33] proposed a homotopy perturbation algorithm to solve the
second kind of nonlinear fuzzy Volterra Fredholm integral equation. More numerical methods
can be find in [6-8, 8-16].

The Volterra integro-differential equations appeared in many physical applications such as
neutron diffusion and biological species coexisting together with increasing and decreasing
rates of generating. The fuzzy nonlinear Volterra integro-differential equation (FVIDE) is given
as follows:

@'(x) = f(x) + [ K(x, )F (@i(x))dt, #(0) = (@ a),t € ] := (a, b], (1.1)
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where the function f: ] X R - Rz and the crisp function K(x,t), are continuous and
%(0) is a fuzzy number. F(#i(x)) is a nonlinear function of {i(x) such as
%3 (x),sin(ii(x)), con(fi(x)). In this paper, the hybrid method LADM is used to solve Eq(1.1).

This work is organized as follows: Section 2 devotes to the preliminaries mainly on the basic
fuzzy definitions and fuzzy Laplace transformation method. Section 3 is the algorithm of LADM
method. Numerical examples are given in Section 4 and illustrate the practicability of the
method. Some of the conclusions of this paper and future work are given in Section 5.

2. PRELIMINARIES

This section devotes to some useful preliminaries. Firstly the basic definitions offuzzy number
and metric are introduced. Given a nonempty set X, a fuzzy subset A is characterized by a
membership function f,(x): X — [0,1] which represents the “grade of membership ” of x in A.

Definition 2.1. [22,23] Let R be the set of reals and u : R - [0,1]. u is called a fuzzy real
number if it has the following properties

()u is an upper semi-continuous function on R,

(ii) u is a convex fuzzy set, i.e,, u(Ax; + (1 — A)x,) = min{u(x;),u(x,)} for all x;,x, ER
and A € [0,1],

(iii) u isnormal, i.e. there exists x, € R such that u(x,) = 1.
(iv) The closure of the support of u is compactin R.

Denote the set of all fuzzy real number u withR¢. For any x, € R, denote y,, be the
characteristic function at x,, it is obvious that y,, € Ry [23].

Definition 2.2. [24,25] Given 0 < r < 1, a fuzzy number u in parametric form is represented
by an ordered function pairs (g(r), ﬂ(r)) satisfying

(i) u(r) isabounded left continuous non decreasing function,

(ii) u(r) is a bounded left continuous non increasing function,

(i) u() < u().

For u = (g, ﬂ),v = (g, 5) € E and A € R, the sum of u + v and the scalar multiplication
Au can be defined by

(u + v)(r) =u(r) +v(r), (u + v)(r) =u(r)+v(r), Vvre]o1],
and
(Au, 2w),1 =0,
Au = _
(2w, 2w), 2 < 0.
Definition 2.3.[22,23] For 0 < r < 1, the r-level set of a fuzzy number u is defined by
[ul":={x€R | u(x) =2r},0<r<1,ul’:={xeR | ulx)=>r}k
It is well known that for each r € [0,1], [u]" is a bounded closed interval of R, ie,[u]” =
[u@,uf)] with u® < uf),u(ﬁ,uf) ER.
Definition 2.4.[19]For any two fuzzy numbers u and v, define D: Ry X R - R* U {0} by

D(u,v) := s%pl]DH([u]r, [v]") = s%pl]max{l u(r) —v() |, 1ulr) —v() 1},

It can be obtained that D is a metricon Rg. (Rg, D) is a complete metric space with the
properties.

Definition 2.5.[17] Let I = [0,a] € R be a closed and bounded interval. A mapping x:1 —
Ry is bounded, if there exists r > 0 such that
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D(x(t),0) <r,vt €1,

Foranyu,v,w,z € R and A € R, some useful properties of D are given by

(i) Du+w,v+w) =D(u,v),

(i) Du+v,w+2) <Du,w)+ D(v,2),

(iii) D(u,v) < D(u,w) + D(w,v),

(iv) D(Au,Av) =| A | D(u,v),

(v) D(u%v,0) = D(w,0)D(v,0) with the fuzzy multiplication % is based on the extension
principle that can be proved by a-cuts of fuzzy numbers u,v € Ry.

Definition 2.6.[35] Fuzzy Laplace Transformation: The fuzzy Laplace transform of a fuzzy
real valued function f(t) is defined as follows:

F(s) = LIF(O} = [ e~ f(0)dt = lim [} e~ f()d,

whenever the limit exist. The symbol L is fuzzy Laplace transformation, which acts on fuzzy
real valued function f = f(t) and generates F(s) = L {f(t)}. The lower and upper Laplace
transform of a fuzzy real valued function f(t) are given as follows:

F(s, @) = L{f (t, @)} = [L{f (¢, @)}, L{F (8, @)}

Definition 2.6.[34] Fuzzy Convolution Theorem: The convolution of two fuzzy real valued
functions f, g defined for t = 0 by

t
(f*9)@® = [, f(t) g(t — T)dT.
Theorem 2.1[34] If fand g are piecewise continuous fuzzy real valued function on [0,0) with
exponential order p, then

L{(f )} = L{f (O} - L{g()} = F(s) - G(s),
where L represents the Laplace transform.
3. LADM ALGORITHM
Consider the following FVIDE:

@' (x) = ) + [T K, OF @())dt, w(0) = a = (@,a),t €] :=(abl0<a<1l (3.1)

The parametric forms of Eq(3.1) are written as
u'(x,@) = £l @) + [ Ko OF (u(t, ),
W (x,a) = f(x, @) + [ K(x, F @t @))dt.

The Adomian decomposition method identifies the nonlinear terms F; and F, by the
decomposing series

(3.2)

F(tx() = X204, (1), F(t,x(D) = X2 B, (8), 32)
with the Adomian polynomials 4,, and B, are given by
1 dn ,
An = ;m [F1(2?=0 /11 xl)]ﬂ_:o' n = 0’1’2' e,
1 d" - i
anﬁﬁ FZ ZA X; ’n=0’1’2’,,_
=0 1=0

Substitute Egs.(3.1)-(3.2) into Eq.(1.5) to obtain
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T20% (8) = F(O) + [1 Ky (6,5) Bosg An ()ds + [ Ky (t,5) £ By ()ds.  (3.3)

The iteration of SADM [30] is as follows
Xo (t) = f(t)l
1

t
Xpny (£) = j K, (t,5)Ayds + j K, (t,5)Byds, i = 0,1,
0

0

In 1999, Wazwaz [30] proposed a MADM on the SADM, which is based on the function f(t)
can be decomposed into two parts f;(t) and f,(t), Thatis

f@® =0+ £ (3.

Combining Eq.(3.3) and Eq.(3.4) yields the following iteration
xo(6) = f1(0),

X1 (8) = ﬁ@+f
0

t 1

K, (t,s)Ayds + j K, (t,s)Byds,
0

t 1
Xip1(t) = f K, (t,s)A;ds +f K, (t,s)B;ds,i = 2,3 -+
0 0

In 2001, Wazwaz and El-Sayed [31] proposed a MADM based on the previous research. This
method represents the function f(t) by Taylor series as

f@) =X fi (O (3.5)

The following new iteration can be obtained from Eq.(3.3) and Eq.(3.5)
xo(6) = f1(0),

Xiaa () = mw+f
0

1
K; (t,s)A;ds +f K, (t,s)B;ds,i = 1,2 ---.
0

t

4. UNIQUENESS OF THE SOLUTION

Based on the following conditions, the existence and uniqueness of the solution of Eq.(1.5) is
proved by the Banach fixed point theorem.

(A1) f:1 - E isacontinuous fuzzy valued function.

(A2) F:IXE - E,F,:1 XE = E are continuous functions and satisfy the Lipschitz
condition, i.e., there exist L; > 0 and L, > 0 such that

D (F1(5: X1 (t)): F (5' X3 (t))) < LlD(xl (t),xz(t)),

and

D (F2 (s, xl(t)),F2 (s, xz(t))) < LZD(xl(t),x2 (t)).

(A3) K; and K, are continuous function and there exist M; > 0, M, > 0 satisfying

ftD (K1(t,5),0) < My, f10 (K, (t,5),0) < M,,
0 0

Wlth O < 6::M1L1 +M2L2 < 1.
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Theorem 4.1. Assume that the hypotheses (A1), (42) and (A3) hold, then Eq.(1.5) has a
unique solution x(t).

Proof. Let T:C([0,1],E) - C€([0,1],E) be an operator defined as

(T0)(6) = F(£) + f Ky (&, 5)Fy (s, x(s))ds + f K, (t,5)F, (s, %(s))ds.

Then for Vy;,y, € E and Vt € [, there are
1

Ty)(®) = £(©) + j Ky (t,$)Fy (s, y)ds + f K, (t, $)F5 (s, y)ds, (i = 1,2).

0
From the Definition 3, there is

D(Ty,(t), Ty, (1))

t t

< D <f Ky (¢, 5)F1(5'Y1)d5'f Ky (¢, 5)F1(5'YZ)d5>
0 0

1

+D (lez (t, s)F, (s, yl)ds,f

0

K, (t,s)F,(s, YZ)dS>

IA

f D (Ky(t,s),0)D (F1 (s,91()), Fi(s, ¥4 (s))) ds
0

+f D (K,(t,s),0)D (F2 (s,91(5)), Fa(s, ¥4 (s))) ds
0

IA

Os<LSLEID (F1 (s,91(8)), Fi(s, ¥, (s))) jo D (Ky(t,s),0)ds

+ sup D (F2 (5,9.()), Fo (s, yz(s))) f D (K,(t,s),0)ds
0ss<1 0

< ML+ Msz)D()ﬁ(S)IYZ (5))
Eq.(4.2) means that T is a contraction map. It is concluded that T has a unique fixed point
x(t) from the Banach fixed point theorem.

5. NUMERICAL EXAMPLES

In this section, the Adomian polynomial corresponding to the nonlinear term is shown in,
and the iterative sequence corresponding to the approximate solution of the equation is
referred to in section 3.

Examplel Consider the fuzzy nonlinear Volterra-Fredholm integral equations as

x(t) = ——t4 ——t+—t+f tx(s)zds+f tsx(s)’ds, 0<s<t<1,
300 400
-2 roo1 (r—2)2 5 ) (5.1)
x(t) = -t (10_E)t_ o t+f0tx(s) ds+f0 t sx(s)%ds
The exact solution is x(t) = [g(t, ), x(t, r)] = %t,%t], 0<r<i1.

The left bound errors and the right bound errors are list in Table 1 and Table 2 for n =
10, respectively.
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Table 1. Left bound of error (when r = 0.5,n = 4)

DOI: 10.6911/WSR].202308_9(8).0012

t Esapm Emapm(1999) Eyapm(zoo1)
0 0 0 0
0.2 8.3093e-16 1.8908e-16 4.7137e-09
0.4 1.7278e-15 3.9205e-16 9.6844e-09
0.6 2.8796e-15 6.5919e-16 1.5782e-08
0.8 4.8225e-15 1.1172e-15 2.5780e-08
1.0 9.2426e-15 2.1025e-15 5.1689e-08
Table 2. Right bound of error (when r = 0.5,n = 4)
t Esapm Emapm(1999) Eyapm(zoo01)
0 0 0 0
0.2 1.6102e-11 3.9477e-12 4.2709e-07
0.4 3.3484e-11 8.2333e-12 8.8134e-07
0.6 5.6007e-11 1.3864e-11 1.4506e-06
0.8 9.3720e-11 2.3354e-11 2.3933e-06
1.0 1.7930e-10 4.4138e-11 4.7110e-06

Example2 Solve the following fuzzy nonlinear Volterra-Fredholm integral equation

The exact solution is x(t) = [g(t, ), x(t, r)] =

r

6
r-2

T

(r-2)>*

53 1 (42
14-4-t + 864 (t

{xa)—-——t———
x(t) = T

(T 2) 2
864 (t

—1) + [ytsx(s)2ds + [, (1- *) x(s)*ds, 0 < s <t <1,

-1)+ fottsf(s)zds + fol(l — t?)X(s)%ds.

FLEQLOSrSL
6 6

(5-2)

Choose r = 0.5 in Eq.(5.2). The left bound errors and the right bound errors are list in
Table 3 and Table 4 for n = 4.

Table 3. Left bound of error (when r = 0.5,n = 4)

t Esapm Eymapm(1999) Eyapm(zoo1)
0 2.9172e-11 9.9033e-13 1.0045e-06
0.2 2.8128e-11 9.5739e-13 4.2128e-07
0.4 2.6050e-11 9.1664e-13 1.6748e-05
0.6 2.5781e-11 1.0367e-12 1.3354e-04
0.8 3.5918e-11 1.9583e-12 5.6646e-04
1.0 1.7825e-10 9.3628e-12 1.7326e-03
Table 4. Right bound of error (when r = 0.5,n = 4)
t Esapm Eyapm(1999) Eyapmz001)
0 1.4430e-06 2.4656e-07 2.4318e-04
0.2 1.3913e-06 2.3799e-07 2.2940e-04
0.4 1.2778e-06 2.2128e-07 5.8890e-05
0.6 1.1958e-06 2.1721e-07 9.9350e-04
0.8 1.3305e-06 2.6890e-07 4.8597e-03
1.0 2.6568e-06 5.4505e-07 1.5303e-02
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From the results of Table 1-Table 4, it is easy to obtain that the MADM which decomposes the
source function into two parts improves the accuracy compared with SADM, and reduces the
amount of calculation. Compared with SADM, MADM, which decomposes the source function
into series, minimizes the amount of calculation, but also reduces the accuracy.

6. CONCLUSIONS

In this paper, the one-dimensional fuzzy number set is regarded as a closed convex dimension
of Banach space, and the existence and uniqueness of solutions of nonlinear fuzzy Volterra-
Fredholm equations are analyzed by using abstract theory. The nonlinear part of the equation
is approximated by Adomian polynomials. By analyzing the results of several numerical
examples, it is found that under the premise that the source term can be decomposed, the
MADM obtained by decomposing the source term function into two terms has higher accuracy
and better effect than SADM. Although the MADM obtained by series expansion of the source
function greatly reduces the amount of calculation, it also reduces the accuracy compared with
SADM.
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